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Designerly play has been identified as a fundamental component of childhood learning 

(Baynes, 1994; Petroski, 2003).  However, as students enter grade one and beyond, the 

increasing academic focus has resulted in the loss of opportunities for designerly play 

(Zhao, 2012). At the same time, there are increasing calls to increase the number, skill, 

and diversity of STEM workers (Brophy, Portsmore, Klein, & Rogers, 2008).  The 

robotics based Elementary Engineering Curriculum (Heffernan, 2013) - used by students 

in this study - and other similar projects have the potential to increase the STEM pipeline 

but elementary engineering is not well-understood. Research is needed to understand how 

to teach engineering to students as their cognitive, motor, and social skills rapidly 

develop in elementary school (Alimisis, 2012; Crismond & Adams, 2012; Mead, 

Thomas, & Weinberg, 2012; Penner, Giles, Lehrer, & Schauble, 1997; Roth, 1996; 



 

 v 

Schunn, 2009; Wagner, 1999). The literature review and theoretical frameworks chapters 

of this study determined the most relevant theoretical frameworks, engineering design 

process models, and existing research that is relevant to a cross-sectional case study of 

six grade 2 and six grade 6 elementary robotics students in the context of established K-6 

elementary robotics curriculum (Heffernan, 2013).  Students were videotaped doing an 

open-ended engineering task based on LEGO robotics using talk-aloud (Ericsson & 

Simon, 1993) and clinical interview (Ginsburg, 1997) techniques.  The engineering 

design processes were analyzed and compared by age and gender. Significant differences 

were found in final projects and engineering design process.  However, the differences 

were not, for the most part, related to development or gender, but were related to the 

complexity of the ride they tried to build and the skills and structural knowledge they 

brought to the task.  The key factors identified consisted of three executive function 

process skills of cognitive flexibility, causal reasoning, and planning ability, three domain 

specific process skills of application of mathematics and science, engineering design 

process skills, and design principles of stability, scale, and the structural knowledge they 

had of LEGO robotics, most pointedly, LEGO connection knowledge. Implications of 

these findings for teachers are given.   
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 CHAPTER 1  
 

PROBLEM STATEMENT   
 
Exposure to technological concepts and hands-on, design-related activities in the 
elementary and secondary grades are the most likely ways to help children acquire 
the kinds of knowledge, ways of thinking and acting, and capabilities consistent 
with being technologically literate. Unfortunately, there is very little information 
about how children or adults learn concepts in technology and how, or whether, 
that learning differs from other types of cognition.   
 
-  National Academy of Engineering, Committee on Technological Literacy, & 
National Research Council (U.S.), 2002 (p. 57)  

 
 

It was hard so it made us jump up and down when it finally worked.   
- Grade 5 Girl  
 

We don’t usually build things.  It’s just fun building things and getting things to 
work and then it does something good at the end.  You feel good about what you 
made.   
- Grade 6 Boy  

 

It teaches us to keep trying.  Even if you fail, you can succeed if you keep trying.  
- Grade 6 Boy  

 

It’s also about working together to make these crazy, awesome things.   
- Grade 6 Boy  

	
It’s more fun to actually be building something.  If you took a class in robots and 
just learned about things, if the teacher just drilled information into your head, it 
would not be as fun as building and experiencing it to learn.     
- Grade 6 Boy  

In my robotics class at Williamsburg elementary, a second grader has a difficult 

time at school due to severe Attention Deficit Disorder with Hyperactivity (ADHD).  No 

matter how patient and understanding his teachers were, he experiences school as a 

difficult place with lots of negative feedback. The classroom teacher and I looked on in 

amazement as he gave an extremely cogent, deep, and enthusiastic explanation of how 
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gears work and how the teeth function to transfer the energy.  He was literally bursting at 

the seams to share this knowledge and we complimented him on his explanation. With 

robotics, he was shining in front of teachers and peers for the first time, helping his peers 

rather than being helped.   

Problem Statement   

Designerly play - children’s play that involves design and building - has been 

identified as a fundamental component of childhood learning (Baynes, 1994; Petroski, 

2003).  Designerly play is supported in typical preschool and kindergarten classes with 

sand tables, water tables, blocks, LEGO blocks, art, and dramatic play areas.   Petroski 

connects designerly play with engineering: “Design is rooted in choice and imagination 

and play. Thus the essential idea of engineering can readily be explained to and 

understood by children”  (p. 206). 

As students enter grade one and beyond, the increasing academic focus has 

resulted in the loss of opportunities for designerly play (Zhao, 2012). At the same time, 

there are increasing calls to increase the number, skill, and diversity of STEM workers 

(Brophy et al., 2008). The new Next Generation Science Standards in the United States, 

in recognition of this problem, require the use of engineering as a way to teach science 

(“Next Generation Science Standards,” 2012).  

The lack of opportunities for designerly play (which includes engineering) in 

elementary schools (Schunn, 2009) may be causing a reduction in the number and 

diversity of students interested in the STEM fields (especially engineering and computer 

science) in middle and high school as natural STEM interest atrophies due to the lack of 

authentic experiences (Schunn, 2009).  Mead, Thomas, & Weinberg (2012) suggest that a 
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STEM pipeline - that feeds a large and diverse workforce - start at the ages of six to eight 

by initially engaging student interest and moving to more structured actives at grades 

three to five.   

Robotics has resulted in increases in STEM self-efficacy and attitudes (Nugent, 

Barker, Grandgenett, & Adamchuk, 2009; Nugent et al., 2009)  for middle school 

students in informal settings.  Similarly, positive gains in self-efficacy and STEM career 

interest were shown for middle and high school girls in an informal setting (Weinberg, 

Pettibone, Thomas, Stephen, & Stein, 2007).  Further gains can be expected if STEM 

education is started at the elementary level though a long term study is needed to validate 

this hypothesis (Mead et al., 2012).  Increases in STEM self-efficacy and interest 

resulting from early STEM experiences could be particularly advantageous for girls since 

STEM attitudes are largely set by middle school (Stein, Nickerson, & Schools, 2004).   

Other reasons for introducing engineering at the elementary level were clearly 

elucidated by Cunningham & Hester (2007):   

1. Engineering builds on young children’s natural interests in building and taking 

things apart, 

2. Engineering is a motivating context for integrating mathematics and science 

content, 

3. Engineering develops iterative problem solving skills, 

4. Engineering develops the ability to work on projects and build 3-D models, 

5. Engineering at an early age helps increase interest in STEM fields and helps 

increase the diversity of STEM workers, 
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6. Engineering and technological literacy are needed for citizens now and in the 

future.   

Elementary engineering curriculum such as the robotics based Elementary 

Engineering Curriculum (Heffernan, 2013) and more general Engineering Is Elementary 

(Ernst & Bottomley, 2011) have the potential to fill the current gap in elementary 

engineering.  Robotics offers specific affordances (such as the natural integration of 

science, mathematics, technology, and creative and collaborative skills) that make it an 

especially attractive educational technology (Brophy et al., 2008; Gura, 2011).   

Levy & Mioduser (2010) showed that complex and advanced cognition could 

occur in young children’s interpretation of robot rules and behaviors.  Similar 

understandings need to be uncovered for the construction and programming of 

educational robots.  Also, ill structured problems such as open-ended engineering design 

tasks have the potential to help develop executive function skills such as causal 

reasoning, planning, and cognitive flexibility (Cutting, Apperly, & Beck, 2011; Cutting, 

Apperly, Chappell, & Beck, 2014; Jonassen & Ionas, 2008). Research that helps teachers 

and curriculum developers understand elementary engineering design processes has 

timely relevance in light of the Next Generation Science Standards (“Next Generation 

Science Standards,” 2012), which incorporates engineering design as a way to teach 

science and engineering and to develop 21st century skills such as collaboration, 

communication, and creativity.   This research should also help elementary teachers 

understand the roles of:  development, gender, domain specific knowledge and skills, and 

general cognitive development in the form of executive function.   

Project Background  
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After working as a software engineer and then a third grade classroom teacher, I 

became a technology teacher.  I inherited a robotics program, which worked well for 

sixth graders.  However, I wondered what would happen if the program started in 

kindergarten with students getting engineering experiences every year.  I saw amazing 

motivation and problems solving in my students.  Students were working collaboratively. 

Certain students were being successful who were not successful in school before.  

Robotics was reaching girls who previously were not interested in programming and 

engineering.  Boys who had difficulty in other areas of school such as reading, writing, 

and attention were the “shining stars” in robotics.   

I developed, mostly by trial and error, a sequence of yearly units that combined 

structured and open-ended robotics activity, which culminated in a curriculum book for 

teachers because no such sequence existed before (Heffernan, 2013).  I did two informal 

teacher action research projects that 1) interviewed robotics students, 2) tracked the same 

students every year doing the same open ended robotics tasks.  A subsequent pilot study 

for this research showed significant differences in engineering design processes and 

causal reasoning between a grade 2 and a grade 6 student.  But many questions remained 

in my mind.  

• What is known about engineering and robotics particularly as it relates to 

student learning and development?  What studies specific to elementary 

students exist?   

• I observed interesting changes in student responses to open ended 

engineering challenges by looking at the same students every year.  Had 
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anyone else done that before?  Were there cross-sectional or longitudinal 

research results that could help PK-6 teachers?   

• How could my work contribute to the knowledge base of elementary 

engineering education?   

Conclusion  

I set out on a multiyear effort to read every paper I could find on educational 

robotics, which also led me to other areas (such and design education, engineering 

education, and cognition) that I found were needed for a comprehensive 

understanding of elementary robotics.  The literature review in the next chap will 

synthesize the results of that search and present the research questions I have 

developed as a result of my pilot study that could be a contribution to our 

understanding of elementary robotics.   
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CHAPTER 2  
 

REVIEW OF THE LITERATURE  

Literature Review Methodology  

I have collected and read many papers on engineering and robotics education.  

This list grew over time by using the citations in papers read to find more papers 

(Brunton, Stansfield, & Thomas, 2012).  I also compared my list with two published 

robotics literature reviews (Benitti, 2012; Sullivan & Heffernan, 2016) and two currently 

unpublished robotics literature reviews obtained through professional contacts (Carberry, 

Klassner, Schafer, & Varnado, 2014; Torok, 2012). I checked reference lists (Brunton et 

al., 2012) noting studies that were cited frequently or seemed important.  I also retrieved 

and read every paper listed on the Tufts Center of Engineering Education and Outreach 

(CEEO) website (“CEEO: Home,” n.d.).  As part of the a literature review of robotics as 

computational manipulatives (Sullivan & Heffernan, 2016) I did an extensive search for 

papers on robotics.  Reading the robotics papers also led me to a series of papers that 

discuss the broader topic of research on the processes of design, engineering education, 

developmental psychology, and causal reasoning.   

Cognitive flexibility (or lack thereof) was identified in the pilot study as a 

potentially significant development factor in elementary engineering processes.  A 

significant body of research was found that investigated cognitive flexibility as one of 

many possible executive function skills (such as planning, inhibition, task-switching) that 

are key to solving both open-ended design problems such as tool innovation (Cutting et 

al., 2011, 2014) and also more structured problems such as the Tower of Hanoi problem 

(McCormack & Atance, 2011).  Executive function (or control) is defined by Cutting et 

al. (2011) as “an umbrella term for psychological processes involved in the conscious 
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control of thought and action” that are “is needed for novel tasks or situations that require 

concentration, planning, strategy development, coordination, and/or choosing between 

alternative options” (p. 499).  Open-ended engineering problems such as the tasks in this 

study are clearly “novel tasks or situations” so the executive function literature was very 

important in understanding the engineering design processes of elementary students.   

Most papers relevant to this study fell into the categories of design, engineering, 

and robotics.   Design is defined as “to plan and make (something) for a specific use or 

purpose”.  Examples of this broadest category of design could include architecture, 

engineering, or even crafts such as knitting.  Engineering is a subset of design that is 

commonly defined as the application of math and science to create something new within 

defined constraints to address a human need (Brophy et al., 2008; Crismond & Adams, 

2012).  Robotics, as used in school settings, is a further subset of engineering where 

students design, build, and program robots for specific tasks.  Robots are typically 

defined as machines that can accomplish intelligent, complex tasks in an autonomous 

fashion. Figure 1 illustrates this taxonomy of studies.    
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Figure 1.   Taxonomy of design studies.   

 
The literature review was first written as a paper-by-paper summary.  Later, the 

papers were synthesized by using techniques of grounded theory to first organize and 

synthesize the results by categories (Charmaz, 2014; Galman, 2013; Glaser & Strauss, 

2009).  The categories that are directly relevant to the concerns of this proposed study 

are:   

• The efficacy of robotics and engineering design as a way of teaching STEM 

content, improving STEM process skills, and increasing STEM interest,  

• The engineering design process - how engineering is a form of problem solving 

and research on the engineering design process,  
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• General aspects of the design process specifically the use of mathematics and 

science in engineering and designerly play that cut across the various phases of 

the engineering design process,  

• Executive function - research on executive functions as it relates to engineering 

design problems, specifically casual reasoning, planning, and cognitive flexibility,  

• Gender - results from examining engineering design or robotics by comparing 

different ages, genders, or expertise levels,  

Engineering Design and Robotics for Teaching STEM Content and STEM Process 

Skills and Increasing STEM Interest 

  In my own experience, robotics seems to a motivating, high-interest way to teach 

STEM to elementary students.  But is this conclusion backed up by research?  Is an-depth 

look at elementary engineering processes even justified?     In this section, the efficacy of 

engineering design and robotics as a way of teaching STEM content, improving STEM 

process skills, and increasing STEM interest is examined.  In general, positive results 

were found.  In some cases, the short-term nature of the robotics or engineering 

experience was suggested as the reason for non-significant results. Another common 

conclusion is that teacher scaffolding is needed to successfully realize STEM content 

gains, especially in the application of science in engineering tasks.  
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 Mehalik, Doplet, & Schunn (2008) asked how science concept learning compares 

when using design based versus scripted approaches in middle school students.   They 

found that students using the systems design approach showed significant gains 

compared to the scripted inquiry approach, especially low achieving African-American 

students.  Fortus et al. (2005) in a quantitative study of grade 9 students found that design 

based science (DBS) was effective in teaching science concepts. Their data also 

suggested that DBS was also helpful in knowledge transfer to different science topics.  

Kolodner et al. (2003) also had a strong focus on knowledge transfer used design based 

science for middle school students in an approach they call Learning by Design (LBD). 

The student data was positive but there were challenges in terms of teachers being willing 

to be more of a facilitator than a lecturer.   

 Leonard & Derry (2011) also found that middle school design based science was 

effective but that there are many complex and challenging changes required for students 

and teachers to combine scientific and engineering approaches. Puntambekar & Kolodner 

(2005) looked for methods to help middle school teachers teach science concepts and 

processes using design. They found that students need different types of classroom 

scaffolding to fully use science process and content in the context of design based science 

activities.   

 Mitnik, Recabarren, Nussbaum, & Soto (2009) explored the use of computer 

supported collaborative learning with robotics to increase understanding of kinematics 

and graphing in grade 10 students.   Students who used a robot as means to teach 

kinematics and graphing did much better in content learning, interest, and collaboration 

than a control group that used a simulation.  In this case, the robots and mobile devices 
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were an effective means to teach physics and mathematics.  As with other studies, the use 

of robotics supports science learning with appropriate curriculum and teacher scaffolding.   

 Williams, Ma, Lai, Prejean, & Ford (2007) evaluated physics content knowledge 

and scientific inquiry skills gains using robotics for middle school robotics summer camp 

students.   The study found science content gains but did not find an increase in science 

process skills in this two-week program and suggested that longer-term experiences are 

needed to realize process gains. Adamchuk et al. (2012) found STEM learning, attitude, 

and self-efficacy gains in an out-of-school robotics experience that incorporated Global 

Information System (GIS) and related technologies. Robotics also has resulted in 

increases STEM self-efficacy and attitudes (Nugent et al., 2009, 2009)  for middle school 

students in informal settings.  In one of the few controlled studies of robotics, Barker & 

Ansorge (2007) showed strong gains for the control group of nine to eleven year olds in 

an after-school robotics program.  However, their test was very specific to robotics and 

the control group received no robotics training.  McGrath et al. (2012) designed, 

implemented, and tested a middle and high school underwater robotics curriculum that 

mixed formal and informal learning.   Their study found gains in learning, attitudes, and 

process skills. Positive gains in self-efficacy and STEM career interest were shown for 

middle and high school girls in an informal setting (Weinberg et al., 2007). 

 Sullivan (2008) asked if robotics provides affordances for increasing thinking 

skills, science process skills, and systems understanding for middle school students.  She 

found that robotics instruction, with proper inquiry based pedagogy, could improve 

content knowledge, thinking skills, science process skills, and systems understanding.  

Sullivan says that, “these outcomes are a result of both the affordances of the robotics 
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environment itself and a pedagogical approach that emphasizes open-ended, extended 

inquiry” (p. 390).  

 In summary, results show that engineering design experiences including robotics, 

given sufficient time, appropriate pedagogy, and teacher scaffolding, result in STEM 

content and process skills increases and STEM interest and self-efficacy gains.  Now that 

generally positive results have been shown overall, a more specific examination about 

student design processes during the robotics and engineering design experiences is 

justified.   In other words, what might be occurring that might explain the positive effects 

of robotics?     

The Engineering Design Process 

 In this section, research specific to the overall design process is reviewed. What is 

known about how elementary students use the engineering design process?  Other ages?  

Does this change over time as they pass the many developmental milestones of this age?  

Engineering design as a form of problem solving.  Problem solving research is 

examined first since the engineering design process is an example of problem solving in 

the specific domain of engineering.  Only problem solving research as it relates to 

engineering design and robotics is reviewed here.  A more general discussion of problem 

solving models and frameworks is part of the theoretical frameworks chapter.   

 Roden (1997, 1999) looked at changes in the design processes from the equivalent 

of prekindergarten to kindergarten in Great Britain over a period of two years with a 

focus on collaborative problem solving strategies. He classified the collaborative problem 

solving strategies students used as: personalization, identification of wants and needs, 

negotiation and reposing the task, focusing on the task, tools, and materials, practice and 
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planning, identifying difficulties, talking self through problems, tackling obstacles, 

sharing and cooperating, panic or persistence, showing and evaluating.  Each strategy 

was judged as:  declining, emerging, developing, and changing over time.  Roden (1997, 

1999) showed that collaborative problem solving strategies do change over time and he 

suggests that teachers both need to understand them and to help children make them 

explicit. This study shows changes over relatively short (yearly) longitudinal time frames.  

The strategies Roden identified are a mix of cognitive, social, and affective strategies.  

McRobbie, Stein, & Ginns (2001) found a three level hierarchy of problems that 

adult learners solved in a design problem:  macro (high level), meso (intermediate), and 

micro (small, specific). This suggests that similar hierarchies of problem solving might be 

found in children’s design processes.    

 Some studies look at how different factors influence problem solving in the 

context of robotics.  Norton, McRobbie, & Ginns (2007) reported better and more holistic 

problem solving when students were required to use flow charts before programming 

LEGO robots to do a complex task.  Also, teacher goals and beliefs heavily influenced 

student processes and outcomes in their activity theory based study of two middle school 

robotics classes.  Sullivan & Lin (2012) found that students’ perceptions of an ideal 

science student influenced their problem solving strategy use.  Students with a process 

oriented, rather than a static, traits oriented view of a scientist, used more flexible and 

successful domain specific problem solving strategies.   

Barak & Zadok (2009) found that middle school students intuitively used 

heuristic search to find solutions to robotics based design problems but could not 

necessarily articulate their strategies.  Students moved from trial and error to a more 
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sophisticated heuristic approaches, which means that more promising possible solutions 

were picked.  The authors define two classes of heuristics as proximity methods (using 

backward and forward chaining to hone in on a solutions) and planning methods by using 

modeling, abstraction, and analogies.  Specific examples in the context of their robotics 

study were:  eliminating components for troubleshooting, reusing an existing function for 

a new purpose, and examining available parts. Some of the heuristics described such as 

modeling, planning, and examining part (research) might also be considered actual 

Engineering Design Process (EDP) phases.  The authors concluded that students could 

have benefited from specific, in-context, math, science, technology, and problem solving 

instruction.   

Lindh & Holgersson (2007) attempted to ascertain the effect of LEGO materials 

on problem solving ability in Sweden with grade 5 and grade 9 students using LEGO 

materials as compared to a control group.  The results were mixed at best.  However, 

there was no curriculum or common professional development so it is unclear how a 

positive result could be expected.   

In summary, researchers have found evidence that problem solving strategies used 

in design and robotics: 

• change with age and experience,  

• can be affected by the tools and materials used, 

• are affected by student perceptions of scientists (and presumably 

engineers),  

• can reveal embedded hierarchies of problems such as macro, meso, and 

micro levels, 
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• many heuristic strategies for problem solving are already known by 

students.   

All these findings reveal the value of problem solving in a design context and also 

suggest some behaviors to look for in this study.   

EDP research. The engineering design process is an example of problem solving 

in the specific domain of engineering.  What is known about the engineering design 

process that could shed light on elementary student’s behavior in the context of open-

ended robotics engineering challenges?   

One common finding is that students (and even expert engineers) do not follow 

theorized, idealized, linear processes (Crismond, 2001; Johnsey, 1993; McRobbie et al., 

2001; Welch, 1999). Welch (1999) provided timelines that show the theorized and actual 

design processes (see Figure 2 and Figure 3).  He found that grade 7 students did not 

follow an idealized, theoretical design process.  They evaluated their design much more 

frequently than the theorized EDP model would predict, tried one idea at a time instead of 

evaluating alternatives, and preferred 3-dimensional materials to 2-dimensional sketches.  
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Figure 2.   Predicted theoretical design process.  From “Analyzing the Tacit Strategies of 
Novice Designers” by  M. Welch, M., 1999, Research in Science & Technological 
Education, 17(1), p. 28.  Copyright 1999 Taylor and Francis Ltd. 
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Figure 3.  Actual design process.  From “Analyzing the Tacit Strategies of Novice 
Designers” by  M. Welch, M., 1999, Research in Science & Technological Education, 
17(1), p. 28.  Copyright 1999 Taylor and Francis Ltd. 

Johnsey's (1993) early study looked at year 4 (grade 3) children’s design 

processes as compared to early, theorized, and idealized models of the design process.  

The children worked in pairs on an hour-long design task.  The study revealed that design 

process was far different than what was predicted from idealized, theorized models.   

Students jumped back across design and these younger students jumped into making 

prematurely.   Teacher intervention was allowed and counted as research in the results, 

which would distort the results from what students would do on their own.  Only part of 

one graph of one student was shown.  A more thorough analysis is needed to gain a better 

understanding of elementary student engineering design processes.   

There has been a thorough analysis of college student engineering design process 

that compare freshman and seniors in series of students by Atman and her colleagues. 

Cardella, Atman, Turns, & Adams (2008) performed a small case study looking at 

different college engineering majors in depth - students that made progress freshman to 
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senior - low to high, low-to-low, high to high, etc.  They compared their EDP graphs as 

freshman and seniors and also rated the designs using a rubric.  They used a talk-aloud 

protocol and recoded transcripts with less than 70% agreement.  They rated quality of 

solution and measured transitions between phases of the design process. In 

general, skilled designers used content knowledge and also utilized more steps of the 

EDP.  Experienced designers spent more time in evaluating alternatives, and making and 

communicating design decisions.  Many seniors considered the end user more than 

freshman and were judged as more innovative.  The seniors did better than freshman 

students in terms of design quality, spent more time on the activity, had more transitions 

between phases, and also did better on the final stages of the design process, which they 

call project realization.  Note that other studies show that experts spend more time on a 

design task (Atman et al., 2007).  

In a related study, Atman et al. (2007) looked at freshman (n=26) and 

seniors  (n=24) engineering students and compared them to expert engineers (n=19) on a 

task that was outside of the experts' area of expertize. Using video and a talk aloud 

protocol, EDP graphs and solution quality were compared.  Requests for further 

information were allowed and coded as such.  The researchers quantitatively tested 

various hypotheses about design process and quality using quantitative methods.   A 

number of findings resulted from the analysis:   

• The number of alternative considered correlated with solution quality for seniors.   

• Problem definition improves as possible solutions are explored.   

• Experts spent more time on the problems especially on problem scoping.   

• Experts considered more alternatives.  



 

 20 

• Experts were more consistent in their process than college students.  This pattern 

was described as a cascading pattern (see Figure 88) with three 

characteristics:  initial time with problem definition and scoping, modeling 

possible solutions, and time spent throughout the process to gather more 

information and further scope the problem.   

The authors recommend that engineering education include: encourage up-front design 

scoping, gather information throughout design process, and attend to project realization.  

Atman, Cardella, Turns, & Adams (2005) found that college engineering seniors 

had better designs than freshmen.  Most students, but not all, improved from freshmen to 

senior year, though that varied by problem type.  Performance and behavior also varied 

by problem type.  Freshman need to spent more time on problem scoping and developing 

alternate solutions.  Both groups did not spend enough time on evaluation and project 

realization.  The authors suggest providing more variety of problems and encouraging 

more focus on latter design stages.   

Crismond (2001) compared novice and expert high school and adult designers as 

they tried to redesign some common household tools.  Each teams’ activities was coded 

and analyzed in terms of a cognitive model Crismond calls the Cognitive Design 

Framework (CDF).   In the CDF, there are three pillars with these horizontal bases:  

design space, process skills, and content knowledge.  Each pillar goes from the concrete 

level to the abstract level vertically.  His thesis was that expert designers make 

connections both between the three pillars and also vertically from concrete to abstract.  

The CDF suggested a design process model with these design activities:  handling 

materials, big picture thinking, generating ideas, making vertical CDF connections, 
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making horizontal CDF connections, analyzing, suggesting solutions, questioning, 

deciding, sketching, and reflecting. The study then analyzed and compared how much 

time each expert and novice teams spend in each design activity (see Figure 4). 

 

 

Figure 4.  Design process analysis of a redesign task.  From “Learning and Using Science 
Ideas When Doing Investigate-and-Redesign tasks: A Study of Naive, Novice, and 
Expert designers doing constrained and scaffolded design work” by D. Crismond, 2001, 
Journal of Research in Science Teaching, 38(7), p. 813.  Copyright 2001 John Wiley & 
Sons, Inc.   
 

Crismond found that only the expert designers used general design principles and 

they also used connections to science concepts to help their design process. The former 

general design principles were “rules of thumb for good design” (p. 796) that connected 

the abstract to the concrete.  In the realm of elementary engineering, these could be the 

design principles of scale, symmetry, and stability that were seen in the pilot study.  
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Symmetry, in particular, has been noted as an important aspect of building for children 

(Portsmore, 2009).  Crismond (2001) concluded that teachers must scaffold design tasks 

to help students make these connections that experts but not novices make.  

What conclusions can be drawn from the college engineering and EDP studies as 

as whole?   

• Actual design processes differ from theorized, idealized, linear models.  

Actual novice and expert design both go back and forth across the design 

process.  

• More experienced designers spend more time up front on problem scoping 

and continue to do so throughout the process.  

• The number of alternative solutions considered generally correlates with 

solution quality.  

• Time spent correlates positively with design quality. 

• Experts use more content knowledge. 

• Experts use general design principles.   

• Experts use the EDP more effectively.   

• Teachers need to provide instruction and scaffolding for students in the 

application of:  science and general problem solving, design processes 

knowledge, and design principles.   

• Significant changes can be seen in engineering processes over time. 

In summary, while much is known about the design processes of older 

students and experts, there has not been a thorough and in-depth study of 

elementary student design processes and it is unknown if and how the conclusions 
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and recommendations of these studies apply at the elementary level.  Now that 

problem solving process research - and specifically the engineering design 

process research - has been reviewed, results pertaining to general aspects of the 

design process such as the application of mathematics and science and designerly 

play are examined and synthesized. A full examination of the EDP phases of 

different models will be deferred until the Theoretical Frameworks chapter.    

General Aspects of Design Process  

 In this section, research related to the design process in general and not to specific 

phases of the EDP as relevant to a study of elementary robotics is examined.  Not all 

possible topics were found.  For example, it is widely reported that robotics is highly 

motivating but no research on interest and motivation and robotics in particular was 

found (except as tool for generating STEM interest). Research was found that relates to 

designerly play and connecting mathematics and science to engineering.  

Designerly play.  In this section, findings that discuss the role of designerly play 

in the context of engineering design or robotics is examined.  Children come to school 

with lots of natural experience and processes in place for design (Outterside, 1993). Fleer 

(1999), in a study of five and eleven year olds, found that older students still engaged in 

fantasy play associated with the design task but in a more subdued and socially 

acceptable way.  However, fantasy play was an integral part of the kindergarten students’ 

design activities. Note that Vygotsky (1986) theorized that the fading of fantasy play, 

especially in the form of language, gradually faded as this internal dialogue becomes 

internalized as rational thought.   
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Designerly play still plays a role when students get older but it changes from the 

fantasy play of younger children.  In a study of middle school robotics students, Sullivan 

(2011) found that play and bricolage (tinkering) are important aspects of fostering 

creativity.  Furthermore, teachers can scaffold creativity by providing open-ended, goal-

oriented tasks, by modeling play and bricolage, and by providing a collaborative and 

creative environment.   

Mioduser, Levy, & Talis (2007) found that kindergarten children first engaged in 

planful play when asked to determine the underlying rules observing moving robots. This 

was a critical aspect of their cognitive processes.  Children can take a technological or 

psychological approach in explaining intelligence machine behavior.  The researchers 

thought of children’s psychological explanations, which were frequently 

anthropomorphic, of robot behavior as a starting point for more scientific explanations. 

As children gained experience and understanding of robotic technology, they moved from 

psychological to technological viewpoints with experience and adult intervention.  

Furthermore, they saw evidence connecting the psychological to technological through 

what they termed bridging.  In other words, the technical did not replace the 

psychological in an unrelated fashion but children made a connection from one to the 

other.   Levy & Mioduser (2008) also state that “the robot’s reactivity to the environment, 

and its endowment with decision-making abilities, distinguish the robot as a 

psychological artifact. Its programmability sets it apart as a computational-technological 

artifact”  (p. 347).  The combination of young children’s developmental tendency to 

anthropomorphize and robot’s special capacities to interact with its environment is one 
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likely cause of the special motivation robotics provides.  In other words, robots have a 

special capacity to engage designerly play.   

  Slangen, Keulen, & Gravemeijer (2010) looked at children’s (age 10-12) 

conceptual understanding of robots.  They defined an ordered taxonomy of cognitive 

levels related to robotics: psychological, technological, functional, and controlled system 

with controlled system being the most sophisticated understanding.  Like Levy and 

Mioduser, they see more playful, psychological mode as the starting point for a deeper 

understanding of robots.   

 In summary, research on children’s understanding of robots suggests that the 

interactive and autonomous characteristics of robots make them especially efficacious for 

engaging the designerly play instincts of children and that this play changes from fantasy 

play to a more subdued form of play as children progress through elementary school.  

Connecting math and science to engineering.  Engineering is often defined as 

the application of mathematics and science to create something new that meets a human 

need (Brophy et al., 2008).  Therefore, the application of mathematics and science is an 

important part of engineering education.  An example of the application of science in the 

context of elementary robotics is the use of gearing up to increase robotic vehicle speed.    

Does the ability to apply mathematics and science knowledge to engineering challenges 

increase as students develop? What is known about how this skill operates at the 

elementary level?   

Research exists on both the application of science in design tasks and the use of 

engineering design, including robotics, to teach science.  Crismond found that expert 

designers used connections to science concepts to help their design process while novice 
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high school designers did not. Crismond (2001) concluded that teachers must scaffold the 

application of science in design tasks for this reason.  Other design-based science studies 

also report positive results on the use of design to teach science come to the same 

conclusion regarding the importance of teacher scaffolding to connect science to 

engineering (Fortus et al., 2005; Leonard & Derry, 2011; Mitnik et al., 2009; 

Puntambekar & Kolodner, 2005).   

 Leonard & Derry (2011) sum the problem up this way:  

Seldom in a design context does a science concept appear in an isolated form that 

allows it to be studied discretely—it operates in concert with multiple, 

intersecting science and technological concepts.  (p.  45) 

 There is much less research on the use of mathematics in engineering design 

tasks.  However, Mitnik, Recabarren, Nussbaum, & Soto (2009) found that the use the 

robots and mobile devices were an effective means to teach physics and mathematics. 

While the application of mathematics and science to engineering tasks is important and 

researchers have found that teacher scaffolding plays an important role, it is not known if 

how this skill that operates at the elementary level.     

 In summary, research on the application of mathematics and science in 

engineering shows: 

• expert designers apply science more than novice designers, 

• design based science creates affordances for the application and understanding of 

science concepts and practices with teacher scaffolding. 

It is not known how the application of mathematics and science works at the 

elementary level and how it might change with development.  
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Executive Function and Engineering 

Executive function is typically defined as ‘‘a collection of inter-related processes 

responsible for purposeful, goal-directed behavior,’’ such as ‘‘anticipation, goal 

selection, planning, initiation of activity, self-regulation, mental flexibility, deployment 

of attention, and utilization of feedback’’ (Davidson, Amso, Anderson, & Diamond, 

2006, p. 71).  Three executive function skills in particular seem the most relevant to 

open-ended engineering design problems: cognitive flexibility, planning, and causal 

reasoning.  Let’s examine research on each one in turn.   

Cognitive flexibility. In both my dissertation pilot study and in my teaching, I 

have observed students (especially younger students) both struggling to project out the 

consequences of design decisions and resisting rethinking non-optimal design decisions 

and starting over.  The latter I called non-optimal persistence.  

Some research that relates to this subject was found in a new book 

called Engaging Young Engineers:  Teaching Problem Solving Skills Through STEM 

(Stone-Macdonald, Wendell, Douglass, Love, & Hyson, 2015).  In their theoretical 

framework, they posit that there are five kinds of thinking developed by teaching problem 

solving via STEM for early learners. 

• Curious thinking 

• Persistent thinking 

• Flexible thinking 

• Reflective thinking 

• Collaborative thinking 

In the framework, persistence is viewed as wholly positive.  However, the non-
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optimal persistence I have been seeing can be thought of as a lack of flexible thinking 

both in the framework above and in the cognitive science literature.   Cognitive flexibility 

(or flexible thinking) is typically defined as part of executive function (Davidson et al., 

2006).   

Cognitive flexibility (CF) in particular, is defined as "the ability to consider 

multiple bits of information or ideas at one time and actively switch between them when 

engaging in a task" (Cartwright, 2012, p. 26).  Cognitive flexibility (flexible thinking) has 

been shown to have a slow developmental trajectory course (Cartwright, 2012; Davidson 

et al., 2006) so it is a good candidate for explaining differences between second and sixth 

grade students.   

Cognitive flexibility is seen as a key component of solving ill-structured 

problems, that is, problems where students have “information about the start and goal 

states but lack information about how to get from one to the other” (Cutting et al., 2011, 

p. 500).  Open-ended engineering problems are an example of ill-structured problems 

(Stone-Macdonald et al., 2015).  Cognitive flexibility is also considered a key part of the 

creativity needed to invent new things or solve problems (Sternberg, 2003; Stone-

Macdonald et al., 2015).  

Given the definitions and context above, two questions emerge in terms of 

elementary engineering.   

1. What does existing research say about the non-optimal persistence (or 

cognitive inflexibility) I have been seeing in second grade students?   

2. Could existing cognitive science research on executive function and 

cognitive flexibility shed light on the engineering process of elementary 
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aged children in terms of coding or a model of elementary engineering as 

it relates to underlying cognitive development?   

Now that I have defined the terms and questions, let’s examine the research.     

Executive function (EF) and cognitive flexibility in particular (CF) play critical 

roles in the development of academic tasks. Engineering is no exception (Stone-

Macdonald et al., 2015).  Results in specific domains point to the importance of CF. For 

example, being cognitively flexible (CF), part of EF, by attending to both sound and 

meaning in a reading task helps reading comprehension (Cartwright, 2012).    Specific 

environmental factors, which could also include school experiences, have positive 

influence on CF. For example, bilingual children show more CF than monolingual 

children (Adi-Japha, Berberich-Artzi, & Libnawi, 2010).  However, previous experience 

can sometimes negatively influence cognitive flexibility (Barrett, Davis, & Needham, 

2007).  While CF is a positive cognitive factor, how does it operate in a specific domain?   

In a study of cognitive flexibility in children's drawing, Karmiloff-Smith (1990) 

found significant changes between ages four and eleven when asked to draw a house, 

man, and animal that does not exist.  Children changed from deleting standard elements 

and changing size and shape to adding elements from other categories.  Representational 

change is first seen at a basic level of simple changes.  For example, younger children 

deleted at the end of their already developed procedure of drawing a figure while older 

children deleted anytime suggesting the younger children could run the procedure only as 

is and then change it after (Karmiloff-Smith, 1990).  Then, as a process of internal 

change, a higher-level reorganization becomes possible.  In other words, once the 

procedure is established, at which time simple changes to the sequence can be made, the 
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procedure itself is available as data to the older children so that can be modified in a 

process called redescription (Karmiloff-Smith, 1995).  If the same process were operating 

in the domain of elementary engineering, we would expect to see children mastering 

specific sequences of tasks but having difficulty in the more open-ended, ill-structured 

problems that require a redescription of domain knowledge.   

Ill-structured problems.  Given that ill-structured problems are difficult, 

especially to younger students who have less developed cognitive flexibility, are there 

scaffolds that teachers can use to help children?  Instructor generated question prompts 

were the best type of prompt to use in an ill-structured undergraduate education project as 

compared to student generated and student generated with instructor feedback (Byun, 

Lee, & Cerreto, 2014).  This result is consistent with the pilot study where asking simple 

question helped the student start a process of tracing back a wiring path to solve an issue 

with his robot car.   

Knowledge integration prompts were most successful in solving ill-structured 

problems (rather than conceptual knowledge prompts or both).  Knowledge integration 

prompts helped social studies undergraduates form structural knowledge, which is 

defined by Chen & Bradshaw (2007) as “the knowledge of integrating domain knowledge 

into useful procedural knowledge for solving domain problems” (p. 361-362).   They 

helped students explain and understand concepts and the relationships between them 

(Chen & Bradshaw).  Although it is not clear if similar conclusions can be drawn for 

elementary engineering, the detection of structural knowledge in the dissertation research 

will be added to analysis process of the ill-structured, open-ended engineering problem.    

For example, it could be that meta-knowledge of key LEGO connector pieces and how to 
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use them could be a key factor in the construction of student-designed LEGO robots in 

open-ended engineering challenges, an example of an ill-structured problem.  Tool 

innovation, an ill-structured engineering problem, has been studied in young children.   

Tool innovation.  According to Cutting et al. (2011), younger children aged four 

to five (and some animals such as crows and primates) can manufacture tools after having 

seen an example.  However, children are not as good at tool innovation until they are nine 

to ten years old.  This is true even after they are given instruction and a warm-up with the 

materials. The authors proposed that this difficulty is due to one of three possible causes:  

mental inflexibility, aspects of the particular task they used, or the developmental 

difficulty of ill-structured problems.  Has the mental inflexibility seen in the pilot study 

(which I termed non-optimal persistence) has been seen in other ill-structured tasks and 

what else is known about it?  Before that question can be answered, some terms need 

definition and some context needs to be established.   

Executive function  (also called executive control in the literature) could be a key 

cognitive factor in tool innovation “needed for novel tasks or situations that require 

concentration, planning, strategy development, coordination, and/or choosing between 

alternative options” (Cutting et al., 2011, p. 499).  The difficulty with tool innovation in 

young children could be due to mental inflexibility, which Cutting et al. say is a function 

of executive control, the latter defined as "conscious control of thought and action”  (p. 

449).  The authors cite a number of sources that have shown that cognitive flexibility is 

very developmental with increases between three and five years of age and additional 

gains with complex tasks, speed, and accuracy between five and eleven years of age.  

Task switching, another component of executive function, could also be a factor.  Cutting 



 

 32 

et al. state that, “It seems plausible that difficulty in switching between alternatives might 

contribute to children’s difficulty with tool innovation" ( p. 499).     

They tested the mental inflexibility explanation by first having the children 

succeed in one task and then had them try a task that had an "opposite" solution.  If the 

mental inflexibility theory was correct, then children should find the second task more 

difficult because they have to switch to a new perspective.  The authors found that 

perseveration (or non-optimal persistence), though seen, was not a significant factor in 

the first experiment and that success on on task did not cause problems with a second, 

"opposite" task.   

However, the four and five year olds did show significant levels of task 

perseverance as compared to six and seven year olds in the second experiment. They also 

suggested that the warm up task used in the first experiment may have helped the 

younger children avoid perseverance behaviors.  With regard to perseverance, Cutting et 

al. (2011) conclude that: 

Nevertheless, although the current studies suggest that overcoming such 
perseveration is not the limiting step for tool innovation success, the data do 
suggest that it may be a necessary condition for success; if children initially use 
an unsuccessful tool and then fail to stop using it, they can never go on to succeed 
in innovating a tool.  (p. 508) 
 
Perseverance was coded if the children persisted with their first, unsuccessful tool 

for the whole time period of one minute.  So, this coding scheme would not work in the 

context of a more open-ended task.  However, the concept of persistence as an idea that is 

not working is valid for my research.  In general, although the results for perseverance 

were mixed in this research in terms of how much it affects the final results, a non-

optimal perseverance was seen to have some significant effects and will be examined 
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carefully in my research to further unpack its significance for second grade students.   

The second possibility they tested was that even though children could innovate 

tools, aspects of the particular task makes innovation difficult; they may persevere with 

unmodified materials.  They reduced the possibility of this in their second 

experiment.  The research showed that aspects of the particular task, which involves 

bending pipe cleaners to make a new tool, were not a factor in the lack of tool innovation.  

However, age continued to be a significant factor in success at tool innovation.  

Possibility three was that a further development of executive function is needed 

for tool innovation because it is a difficult, cognitively challenging, ill-structured 

problem.   Cutting, Apperly, & Beck (2011) relate tool innovation and ill-structured tasks 

as follows.   

Tool innovation is an excellent example of an ill-structured task. Participants have 
information about the start and goal states but lack information about how to get 
from one to the other.  They must devise and hold in mind a solution to the 
problem, inhibit irrelevant actions, and plan a sequence of actions to achieve their 
goal. (p. 500)  
 
The authors suggest, through what seems to be a process of elimination rather 

than an actual experiment, that a better developed executive function is needed to solve 

ill-structured problems like tool innovation.  

Cutting, Apperly, Chappell, & Beck (2014) sought to better understand the 

reasons why tool innovation is so difficult for young children in a second set of 

experiments.    Specifically, by highlighting different parts of the solution in turn, they 

sought to determine what knowledge (or lack thereof), if any, was the cause of the 

difficulty.  Alternatively, were the difficulties the result of an executive function issue of 

integrating different knowledge in an ill-structured problem?   
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Their thesis is that experts possess structural knowledge that allows them to 

successfully integrate different pieces of domain specific knowledge into a solution.  

Novices, even though they may possess the required domain specific knowledge, lack the 

structural knowledge to integrate the domain specific knowledge into a solution.  The 

researchers sought to find out if  “children’s difficulty in these tool innovation studies 

may lie with bringing to mind the required pieces of information from memory, 

coordinating these different pieces of knowledge, or a combination of both” (Cutting et 

al., 2014, p. 112).   

 Cutting, Apperly, Chappell, & Beck (2014) controlled two necessary pieces of 

domain specific knowledge:  the material properties and the target state.  They found that 

older children were able to integrate the domain knowledge but that younger children 

were not, even when both pieces of required domain specific knowledge was highlighted 

for them. Cutting et al. conclude that, “that without this structural knowledge, young 

children lacked the flexibility needed to retrieve their knowledge from memory and then 

coordinate it in order to solve these tool innovation tasks” (p. 115).  Furthermore, the 

main issue for both age groups was knowledge retrieval with knowledge integration 

being a big issue for the younger children.  The lack of structural knowledge could have 

explanatory power for differences between second and sixth grade students in open-

ended engineering problems.  Note that Cutting et al. (2014) did not suggest how students 

can be helped to solve ill-structured problems.   

Planning in young children.  The pilot study revealed significant differences in 

the ability of one second and one sixth grader to anticipate the consequences of their 

design decisions.  How might this result relate to children’s general ability to plan (as 
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opposed to the specific aspect of the plan phase of the EDP) as reported in the research 

base?  McCormack & Atance (2011) review of research on planning for young children 

could illuminate the planning issues seen in the pilot study.   

 McCormack & Atance (2011) define planning this way: 

“Critically, planning is a key way in which flexibility of thought can be exploited 

to enable behavior to adapt not just to the current state of the world, but to 

anticipated states of the world in the immediate or distant future.” (p. 3)  

 For McCormack & Atance (2011), planning is seen as possibly related to three 

different aspects of cognitive flexibility:  event-independent representations of time, 

executive function, and self-projection. 

Planning and the ability to mentally represent temporal events.  The authors 

(McCormack & Atance, 2011) conclude that the development of planning in young 

children (which they define as three to five years old generally) is related to their ability 

to mentally represent temporal events independently of the actual events.  The authors 

emphasize that this ability is not the same as the ability to reproduce event order in a 

story read to them, which is called sequencing (Kazakoff & Bers, 2012).  (Presumably, 

however, sequencing is a prerequisite cognitive skill to the mental representation of 

temporal events independent of the actual events.)   This mental representation is done 

when children envision empty slots in a future sequence of actions that could be filled in 

different ways.  The authors suggest that this ability has been shown by research to be 

important in preschool children’s success in different types of planning tasks such as 

Tower of Hanoi, Tower of London, route planning, and real world planning tasks.  Are 
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children using the same cognitive process when predicting the effects of their design 

decisions in an open-ended engineering task? 

Planning and executive function.  McCormack & Atance (2011) examine what 

research has revealed about how various subcomponents of executive function (EF) 

influence success in planning tasks.  First, the authors argue that the research shows that a 

general EF ability is not responsible for planning but that the subcomponents of EF of 

working memory, inhibitory control, and task switching may be.  Their review of 

research suggests that only inhibitory control only may be a significant factor in planning 

for young children.  Could the better-developed inhibitory control of sixth graders 

explain some of the difference in planning seen in the pilot study?  

Planning and self-projection.  Lastly, the authors discuss the role of self-

projection in planning for young children.  Self-projection is defined as the ability to shift 

personal perspectives in the form of alternative scenarios (McCormack & Atance, 2011).  

Two types of self-projection are discussed:  future thinking and theory of mind (TOM) 

(Buckner & Carroll, 2007).   

 Future thinking - as contrasted with meeting present goals - is defined as 

projecting the self into future goals and scenarios.  Under this definition, open-ended 

engineering tasks are defined as meeting present goals and not as future thinking.  

However, it is not clear to me how there can be a clear-cut difference as both involve 

mental projection into the future.  In any case, research showed similar development in 

future thinking as in other planning tasks during the age span of three to five years old 

(although research is sparse).   

  Theory of Mind (TOM) is defined as the ability to know that one has a mental 
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state and that others have different mental states for the purpose of explaining present and 

anticipate future behavior for the individual (“Theory of Mind | Internet Encyclopedia of 

Philosophy,” n.d.).    Evidence linking TOM to planning ability is mixed (McCormack & 

Atance, 2011).  In summary, as presently defined and with the current state of research, 

self-projection is of questionable value in explaining elementary engineering processes 

because:  1) it is defined as having an image of self which is not necessarily present in the 

domain of engineering and 2) because research results linking self-projection to planning 

are not clear.  

Planning and drawing in the context of design.  Planning is an early stage in the 

engineering design process typically put after problem definition and research.  Although 

I could only find a limited number of studies that look at planning in design, both were 

for elementary students, including one cross-sectional study, so they are particularly 

relevant for this literature review.  Drawing is a common way for students to plan their 

designs and results specific to drawing are reviewed after results for planning.     

 Portsmore (2011) looked at preplanning for grade one students and found that 

even first grade students could sometimes use effective preplanning in a design task with 

familiar materials. She used a clinical interview format with a precisely defined design 

task which was to retrieve a set of keys on a key ring from a tall container using a set 

collection of materials (such as tape, magnets, spoons, and pipe cleaners) with a twenty-

minute time limit.  Portsmore provided a very precise and structured task with concise 

rubrics for drawings of their plans and for their completed student designs. Many first 

graders were able to plan ahead successful designs and materials choices in the familiar 

and constrained domain.  However, they did not necessarily build what they drew 
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indicating that first graders may not have used these drawings as planning as adults 

would.  The results of this research seem to indicate the planning can occur with younger 

children with familiar materials and tasks that are not too cognitively demanding 

(Gardner & Rogoff, 1990).   

In a cross-sectional study of planning comparing five and thirteen years olds, 

Gustafson & Rowell (1998) asked students to say what their course of action would be 

and why when presented with an open ended design task.  The choices were:  research 

with book, put together model, draw picture, talk to friend, or think/reflect. The initial 

course of action was determined by their initial idea of successful solution and there were 

two approaches, inside and outside of head.  If students had an idea of the solution 

already (inside head), they tended to choose modeling, imaging, or reflecting.  If the 

students did not have an idea, they choose the outside of head approaches of research or 

social (talk to a friend).  There were gender and age differences.   Many girls aged eight 

to ten chose a social approach. Research, imaging, and modeling were the most popular 

choices - modeling with younger students and research with older students.  Their 

conclusion was that teachers should be aware of and allow for different approaches to 

planning.   One conjecture was that students that chose reflection might be more 

cognitively advanced and capable of metacognition.  The age and gender differences they 

found in the elementary range suggest for planning that similar differences exist for the 

more general engineering design process.   

 Fleer (1999) found that planning drawings were not always used by kindergarten 

and grade 5 and 6 students in a cross-sectional case student of design processes.  

However, post-make drawings, especially by the older students provided good 
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documentation of design choices.  The younger children especially showed a preference 

for using 3-D models (i.e., the actual materials) to solve design problems rather than 

drawings. She also noted the importance of “tacit doing knowledge”, that is, children 

expressed knowledge by acting on materials rather than discourse or drawings. This study 

suggests that older elementary students utilize planning drawings more often that younger 

students.   

Anning (1994) found that drawing ahead of time was frequently not meaningful in 

a case study that primarily focused on implementation issues with the inclusion of design 

in English primary schools.  She theorized that this is because drawing is not as valued as 

reading and writing in school and that there may be developmental constraints on 

drawing as planning for younger students.  She cites research that suggested that at age 

nine, children can make accurate planning drawings for blocks (Anning, 1994; Banta, 

1980).  

In summary, the findings on planning and drawing that may be relevant to 

elementary open-ended robotics engineering tasks are:  

• Results are mixed as to the utility of drawing and the capability of younger 

students to plan.  Some positive results were found in tightly constrained 

problems with familiar materials (M. D. Portsmore & Brizuela, 2011).  

However, other studies find that young students largely skip the planning 

phase and the reason for this are developmental constraints (Anning, 1994; 

Fleer, 1999). It is possible that children can accomplish tasks ahead of 

projected developmental milestones in constrained tasks with familiar 

materials.  My pilot study data suggests that this may not be the case in the 
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more general case of open-ended engineering challenges where knowledge 

transfer must occur.   

• Planning strategies may depend on variety of factors such as the problem 

itself, student age, gender, and whether or not the student has an initial 

solution to the problem.   

Causal reasoning.  Causal reasoning theory and research could shed light on the 

increasing ability of elementary students to plan and to project out the effects of their 

design decisions shown in my pilot study, which involves causal reasoning.  

Piaget defined a progression of causality from magical-phenomenalist (which 

Piaget called realism - different than how realism is usually defined in philosophy) to an 

eventual scientific viewpoint (Fuson, 1976; Piaget & Inhelder, 1969). Fuson (1976) 

summarized Piaget’s theory of causal reasoning as follows.  Infants do not have a 

delimitation of self and the outside world, attribute cause to the temporal proximity of 

events, and attribute events to them without consideration of physical proximity. From 

three to eleven, a progression of causality occurs from the realism of infants to 

objectivity, reciprocity, and relativity. In the realism stage, perceptions and feelings are 

directly experienced (real) without additional thought or mental representation and 

without a notion of self and other.  In the objectivity stage, there is an understanding of 

self and other.   With reciprocity, the child places equal value on the views of him or her 

and other.  With relativity, the child perceives the relationships between different objects.  

In early stages of causal reasoning, children may give animistic, finalistic, participatory, 

and artificial explanations of phenomenon.  An example of animism from robotics is 

when children attribute causation in robots or machines to an anthropomorphic 
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conception of machine itself (Mioduser et al., 2007).  Finalistic explanations are the result 

of the belief that everything has an explanation and any explanation suffices regardless of 

its plausibility.  Participatory explanations result from children’s belief that they 

participate causally in natural phenomenon (magical thinking).   Finally, artificial 

explanations attribute all causality to its benefit to humans (Fuson, 1976). Others have 

since built on Piaget’s theories of causality.   

Jonassen & Ionas (2008) provide a complex model (see ) of causal reasoning and 

then suggest different ways to support the learning of causal reasoning.  In this model, 

problem solving and conceptual change support predictions, implications, inferences, and 

explanations, which, in turn, enable causal reasoning.  Predictions are defined as 

anticipating an outcome based on the initial state of a system and plausible causal 

relationships.  Prediction in the model is defined in terms of either the scientific method, 

namely hypothesis, or forecasting events such as weather or economic performance.  

(Implication is defined as the same process as prediction but with more probabilistic 

causal relationships.) Inference is defined as the opposite process as prediction, that is, 

positing events and initial conditions based on a final set of conditions and plausible 

causal relationships. Explanation is defined as the ability to describe a system’s 

components, functions, and causal relationships. The authors see causal reasoning being 

engaged by direct instruction, simulations, question prompts, and learner modeling.  
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Figure 5.  This figure shows a general framework for causal reasoning.  From “Designing 
effective supports for causal reasoning” by D.H. Jonassen  & I.G. Ionas, 2008,  
Educational Technology Research and Development, 56(3), p. 289.  Copyright 2008 
Association for Educational Communications and Technology. 
 

Engineering education provides problem-solving affordances for learning causal 

reasoning.  Although I was unable to locate any research on causality specifically in the 

context of engineering design, all four enablers of causal reasoning in this model are part 
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of engineering  - predictions, inferences, explanations, and implications - but prediction 

and inference are the most relevant. Engineers predict how a design, process, or software 

program will actually function in the physical world.  Inference is used when 

troubleshooting a model or prototype to determine design or prototype build issues to 

understand why a prototype did not work so the design can be improved.    

Casual reasoning and causal inference research typically centers on a posteriori 

evaluation of data to determine causes.  Engineers make a priori predictions of the 

performance of their designed systems.  The predictions may be supported with 

simulations, models, and prototypes.  In the context of LEGO robotics, students are 

expected to design and then build a prototype with a prediction of performance in mind 

and then evaluate the actual performance with respect to predicted performance.  Since 

prediction is usually associated with science, I use the term mental projection to describe 

this cognitive skill in the domain of engineering.  The ability to mentally project the 

impact of design decisions turned out to be an important difference between the second 

and sixth grade students in my pilot study.  A fourth grade student of mine was able to 

articulate the importance of causal reasoning in robotics this way:  

You have to think in a different way.  This would make this - would make this - 

happen.  Each step is connected.  

While the literature on causal reasoning does not consider the domain of 

engineering, there are some principles and findings that may inform the study of causal 

reasoning in the context of engineering.  Kuhn, Schauble, & Garcia-Mlia (1992) found 

that successful causal reasoning depends on: 1) students being able to realize that their 

existing theory could be wrong and 2) students refraining from only including data that 
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supports their theories. I theorize that these factors may be impacted by development; 

specifically, ego-centrism (only seeing their own point of view) may make casual 

reasoning difficult for younger children (Piaget & Inhelder, 1969). Ego-centrism 

manifested in my pilot study for the second grade subject as 1) difficulty predicting the 

effects of non-functional design decisions and 2) difficulty reworking designs with 

problems.  See Chapter 3 for a more in-depth discussion of Piagetian concepts such as 

ego-centrism.    

The authors (Kuhn et al., 1992) also found that self-directed practice alone (such 

as open-ended engineering challenges) was sufficient to cause gains in scientific and 

causal reasoning.  Finally, the authors suggest that the development of scientific 

reasoning - of which causal reasoning is an important component - is gradual, continuous, 

and not a discrete developmental milestone like Piagetian conservation.   

Kuhn (2007) studied fourth grade students who received instruction in the control 

of variables (COV) strategy for understanding cause and effect. COV is the systemic 

manipulation of one variable at a time to pinpoint cause and effect.  Even when they had 

mastered the COV strategy, students did not necessarily transfer it to the domain under 

study.  She suggests that curriculum is needed to help students apply COV and other 

scientific reasoning skills. Engineering education could be one such domain.   

Legare, Gelman, & Wellman (2010) found in their study of preschool children 

that inconsistent (rather than consistent) conditions triggered explanations which, in turn, 

triggered causal reasoning.  The evaluation phase of engineering is rife with results that 

differ from the predicted outcome and therefore provides a rich experience for improving 

causal reasoning.  
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Kuhn & Dean (2004) report that research on causality is split into two camps.  

Causal reasoning can be described as utilizing either mechanism based (explanations), 

covariance based information (data), or both.  Multivariate inference (MVI) researchers 

look at how college students attribute causes from multiple variables based on data.  

Scientific Reasoning (SR) researchers look at how children use knowledge of underlying 

mechanisms to attribute cause in the scientific realm.  Kuhn & Dean (2004) argue that 

both approaches have merit.  They conclude that research from both camps can be 

combined and causal reasoning should combine both data and underlying mechanisms. In 

the context of LEGO robotics based engineering challenges, students optimally use data 

from prototype evaluation and knowledge of underlying causal mechanisms.  

 Other studies attempt to show how causal reasoning manifests in young children.  

Buchanan & Sobel (2011) showed marked jumps in causal reasoning from age three to 

age four in experiments centered around changing battery and light configurations, which 

demonstrated that causal reasoning does have developmental characteristics.  Their 

experiments also showed that this cognitive developmental was domain specific and not 

general (in contrast to Piaget’s general and universal stages).  Finally, the children needed 

to see and understand the underlying causal mechanism to successfully determine cause 

and effect.    

In summary, research on causal reasoning has the following importance for a 

study of elementary engineering: 

• elementary robotics curriculum and instruction should teach both data 

based and mechanism based approaches to troubleshooting, 
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• curriculum is needed to help students apply control of variables and other 

scientific reasoning skills,  

• the development of scientific reasoning - of which causal reasoning is an 

important component - is gradual, continuous, and not a discrete 

developmental milestone like Piagetian conservation, 

• self-directed practice alone (such as open-ended engineering challenges) is  

sufficient to cause gains in scientific and causal reasoning,  

• engineers use both prediction and inference in their design processes and 

elementary engineering challenges create affordances to teach these skills.    

Limitations of existing research.  It is not clear how these different underlying 

executive function mechanisms and skills may overlap or be interrelated (McCormack & 

Atance, 2011).  Although causal reasoning must be closely related to planning, there is no 

mention of causal reasoning in the review.  Research in planning relies heavily on Tower 

of Hanoi and Tower of London tasks, which may differ significantly from the open-ended 

robotics engineering tasks in this study. Preliminary results from the pilot study indicate 

that milestones in these tasks may lag behind simpler, more well-defined tasks studied by 

educational psychology and other researchers (McCormack & Atance, 2011; Portsmore 

& Brizuela, 2011). 

Summary of executive function as it relates to engineering.  My thesis is that 

developmental, underlying cognitive mechanisms change significantly from second to 

sixth grade, especially causal reasoning, which affects the ability of students to solve 

open-ended engineering challenges specifically in the ability to predict the consequences 

of their design decisions.  Furthermore, scaffolding in the form of teacher prompts can 
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benefit students.  The literature review of executive function, cognitive flexibility, and 

engineering and suggests a complex variety of related factors that may be at work in this 

domain.  Some are functional such as problem solving (shown in blue) and some are 

underlying cognitive factors (shown in yellow) such as inhibitory control.  The diagram 

below (see Figure 6) shows the relationships between these possible factors, ill-structured 

problems, and open-ended engineering problems as established by a synthesis of 

research, inference, and the pilot study.  The diagram was used to guide the coding and 

analysis of the research data of second and sixth graders undertaking the same open-

ended engineering problem (although not all factors may be detectable in this particular 

study).  
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Figure 6. Relationships between engineering, functional, and cognitive factors.  

 Robotics and Gender  

 The lower numbers of women pursing STEM and, in particular computer science 

careers, is well-documented (Margolis & Fisher, 2003; National Science Foundation, 

National Center for Science and Engineering Statistics, 2013).  For older students, there 

are indications that females have preferences for relational activities or programs with a 

social context although they can be attracted to traditional programs with prior exposure 

(Hynes, 2007; Melchior, Cutter, & Cohen, 2004; Nourbakhsh et al., 2005; Rosen, 

Stillwell, & Usselman, 2012; Skorinko, Doyle, & Tryggvason, 2012; Stein et al., 2004; 

Voyles, Fossum, & Haller, 2008).   What are the other gender differences researchers 

have found in robotics programs?  For the differences researchers and theorists have 
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identified, do they operate at the age of elementary students, who may not yet have 

strong, internalized, socio-cultural gender expectations related to STEM learning?   

 A short discussion on what is meant by gender is appropriate. None of the studies 

reviewed here specified how gender was determined.  Furthermore, researchers assumed 

a binary definition of gender as either male or female though non-binary instances of 

gender are certainly in use by many (Butler, 2011).   In most cases, it was likely that 

gender was self-reported since questionnaires were used as the data source for 

demographic information. In one case, researchers recorded unspecified gender 

(Skorinko, Doyle, & Tryggvason, 2012) presumably by offering a non-specified gender 

option in their questionnaire.  However, that class of gender was not included in their 

data analysis.  In some cases, gender may have been assigned by teachers and researchers 

without regard to self-reported gender identify.   

Most robotics studies show equal achievement for females (Hynes, 2007; Milto et 

al., 2002; Nourbakhsh et al., 2005; Nugent et al., 2010; Sullivan & Bers, 2013; Varnado, 

2005) while two studies showed higher gains for males in some aspects of robotics 

programs (Nugent et al., 2010; A. Sullivan & Bers, 2013).  For example, Sullivan & Bers 

(2013) found positive achievement results for kindergarten girls overall  (in a curriculum 

that included art materials) but that boys did better in handing robotics materials and 

using IF statements.  They suggested that stereotype threat (Committee on Maximizing 

the Potential of Women in Academic Science and Engineering (U.S.), Committee on 

Science, National Academy of Sciences (U.S.), National Academy of Engineering, & 

Institute of Medicine (U.S.), 2007) may be operating even for students as young as five 

and six.   Stereotype threat is defined by Sullivan & Bers (2013) as the “the anxiety that 
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one’s performance on a task or activity will be seen through the lens of a negative 

stereotype” (p. 693).  In these cases, females still showed gains but they were less than 

male achievement gains.   

Voyles et al. (2008) also found marked differences in the way teachers responded 

to males and females in the context of a traditional robotics activity.  While teachers felt 

that they were being sensitive to and supportive of both genders, some of their results 

could result in decreased self-efficacy and independence for females.  For example, 

teachers thought for girls or did work for them more than for boys.   

Turkle & Papert (1991) developed the theoretical notion of epistemological 

pluralism, which states that “hard” and “soft” approaches to computer programming are 

equally valuable.   The “hard” approach is top-down, abstract, and distanced from 

computational artifacts while the “soft” approach is bottom-up, concrete, and 

characterized by closeness to computational artifacts.   However, the “soft” approach is 

not valued in schools and in the field so this discourages women, who tend to take a 

“soft” approach. They say that, “sources of exclusion [are] determined not by rules that 

keep women out, but by ways of thinking that make them reluctant to join in” (p. 1). 

They propose that a thinking style that views computers as concrete, close, and 

transparent as an equally valid way of relating to and working with computers.  The 

authors call this bricolage:  “Bricoleurs construct theories by arranging and rearranging, 

by negotiating and renegotiating with a set of well-known materials”  (p. 6).  Bricolage is 

the same process that was later expanded into the notion of tinkering by Resnick & 

Rosenbaum (2013) as a “valid and valuable style of working, characterized by a playful, 

exploratory, and iterative style of engaging with a problem or project” (p. 164).  
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Gender differences in engineering and science process skills were not reported by 

studies in a study of middle school robotics camp study by Nugent et al. (2010).  Varnado 

(2005) found no gender difference in problem-solving styles (or problem-solving 

achievement) in a large study of First LEGO League (FLL) participants.  [FLL is a 

traditional, popular, after-school competition focused activity for middle school students.]  

However, differences in self-efficacy among male and female robotics students have been 

a strong focus of many studies.   

Many studies of traditional robotics activities report lower initial self-efficacy in 

females (Nourbakhsh et al., 2005; Voyles et al., 2008; Weinberg et al., 2007).   Girls can 

have lower self-efficacy in robotics even if their achievement is the same as boy’s 

achievement (Voyles et al., 2008).  Robotics activities do increase female self-efficacy 

(Melchior et al., 2004; Milto et al., 2002; Nourbakhsh et al., 2005) though it may still 

measure lower than male self-efficacy even after the activity.  Weinberg et al. (2007) 

found that mentoring can positively impact female self-efficacy gains and overcome 

lower initial self-efficacy.  Girl’s self-efficacy in computers precedes loss of interest 

(Voyles et al., 2008) which shows the importance of self-efficacy for girls in robotics 

activities (Mead et al., 2012). 

In summary, research on gender and robotics: 

• suggests that important factors for the lower self-efficacy of females and 

the achievement differences that have been shown are due to stereotype 

threat, teacher differences in their treatment of boys and girls, the lack of 

acceptance of epistemological pluralism, and lack of previous experience,  
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• suggests that an examination of differences in engineering design 

processes of elementary age students as STEM gender-specific 

expectations solidify and how these differences relate to engineering self-

efficacy may help inform the issue of STEM related gender differences.  

Literature Review Conclusion  

 The literature review sought to answer the following questions. 
 

• What is known about engineering and robotics particularly as it relates to 

student learning and development?   

• What studies specific to elementary students exist?   

• Were there cross-sectional or longitudinal research results that could help 

elementary teachers?   

• How can my work contribute to the knowledge base of robotics based 

elementary engineering education?   

 
Although robotics has been identified as a promising way to increase STEM 

interest and also to teach science concepts (Brophy et al., 2008), there is no extant 

research of student development in the context of a robotics in a sustained, long term 

elementary program.  The studies that do exist show promising results for short term 

robotics programs in middle and high school (Hynes, 2007; Sullivan, 2008).  Many of 

these studies use design, engineering, or robotics as a way to teach science concepts 

(Adamchuk et al., 2012; McGrath et al., 2012; Williams et al., 2007). Studies that do not 

show significant increases from robotics suggest longer term exposures are needed 

(Wagner, 1999; Williams et al., 2007).   
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Very few longitudinal or cross sectional studies exist for design or engineering.    

Roden's (1997, 1999) early study tried to broadly induce cognitive, affective, and social 

problem solving strategies at two points in early childhood.  Fleer (1999) did some early, 

cross sectional work on characterizing the relationship between design and the artifacts 

actually produced in a design problem at ages five and eleven.  English, Hudson, & 

Dawes (2013) are doing a longitudinal study of middle school students simple machine 

based designs.  However, they are not looking at how students change over time but are 

more interested in the complete educational systems of teachers, students, and materials.  

There are some relevant cross-sectional studies. Crismond (2001) looked only at adults 

and high school students and the two cross-sectional studies (Fleer; Penner et al., 1997) 

did not cover the complete elementary spectrum and did not have a primary focus on 

engineering and robotics.  Significant changes in engineering design processes and 

solutions have been documented for college students from freshman to senior years 

(Atman et al., 2005; Cardella et al., 2008).   

There have been a number of case studies and microgenetic studies focused on 

engineering or design.  However, most do not cover the elementary age spectrum 

(Crismond, 2001; Fleer, 1999; Leonard & Derry, 2011; Levy & Mioduser, 2010; 

McRobbie et al., 2001; Outterside, 1993; Roden, 1997, 1999; Roth, 1996;  Sullivan, 

2011; Wendell & Lee, 2010).  Others are focused on design based science rather than 

engineering (Leonard & Derry; Levy & Mioduser; Penner et al., 1997; Wendell & Lee, 

2010).  Other case studies are not centered around cognitive development but more on 

curriculum or analyzing the classroom context (Leonard & Derry; Roth).   
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Sullivan (2008) does relate difficulties student had with multiple sensors, for 

example, to developmental issues in causal reasoning. Kazakoff & Bers (2012) related 

sequencing to the underlying developmental skills of centration and reversibility.  

However, there is no research that relates elementary engineering more broadly to more 

general frameworks.   

There are many areas of elementary robotics that are unexplored.  Examples are 

interest and motivation of robotics, the workings of social-cultural context, the efficacy of 

specific programs, and teacher challenges in implementation. The literature review did 

reveal a few studies have examined pieces of the cognitive puzzle of how development is 

expressed in design, engineering, and robotics. Other studies have examined engineering 

design processes thoroughly at different grade levels. However, there is a need for a 

systemic, developmental characterization and analysis of elementary engineering that will 

help inform curriculum, instruction, and assessment. This understanding could form the 

basis of a theoretical framework of robotics or a learning progression (Krajcik, 2011) for 

robotics based engineering education for K-6 students.  

Given that little is known about teaching engineering to elementary students, this 

study seeks to answer the following questions (all in the context of an open-ended 

engineering challenge using LEGO robotics):  

1) Do grade 2 and grade 6 students’ engineering design processes and final 

products differ?  If so, what are the specific differences?   

2) Do male and female students’ engineering design processes and final 

products differ?  If so, what are the specific differences?   
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3) If differences are not seen by gender and grade level, what relationships 

do explain the differing final products and engineering design processes 

of elementary students?   

 
In order to answer these research questions, it is first necessary to determine the 

most relevant theoretical frameworks, engineering design process models for a a cross-

sectional case study of elementary robotics students in the context of established K-6 

elementary robotics curriculum (Heffernan, 2013).  The aim is to gain an understanding 

of students’ skills and processes as they undertake open-ended engineering challenges at 

these two different ages in the context of robotics. The long-term goal is to inform 

instruction of engineering for elementary aged children. 

 

  



 

 56 

 
CHAPTER 3  

 
THEORETICAL FRAMEWORKS 

 
Theoretical frameworks are overall theoretical lenses to view cognitive or other 

processes related to design.  What are the most relevant theoretical frameworks that can 

inform a developmental cross-sectional, case study of elementary robotics students?  In 

this section, I examine relevant existing frameworks and begin to synthesize a conceptual 

framework that guided the coding and analysis for this study.    

Designerly Play 

Designerly play (the elements of design that are found in children’s play) has 

been identified as a fundamental component of childhood (Baynes, 1994; Petroski, 2003).  

Children “actively seek engagement with their surroundings” and  “desire to interact and 

shape the environment” (Baynes, 1994, p. 12).  The learning theories of constructivism 

(Piaget & Inhelder, 1969)  and constructionism (Papert, 1993; Papert & Harel, 1991) 

provide frameworks to support the teaching of design because: 1) children actively 

construct their knowledge in design projects (constructivism), 2) they typically do so 

while building a physical model (constructionism).  

Piagetian Constructivism 

In a longitudinal or cross-sectional study with a strong focus on cognition, existing 

cognitive benchmarks are obvious frameworks in which to describe learning in the 

specific domain of focus, elementary engineering.  Piaget’s constructivist theory defines 

four stages of cognitive development:  sensorimotor (0 to 2), pre-operational (2 to 7), 

concrete operational (7 to 11), and formal operational (11 and up) (Piaget & Inhelder, 
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1969).  In a longitudinal or cross-sectional study of K-6 children, students transition from 

the pre-operational, intuitive thought substage (between grades K and 2) to concrete 

operational (grades 2 to grade 5) and finally to formal operational (grade 6).  Piaget notes 

that ages are “average and approximate” (Piaget & Inhelder, 1969, p. 3).   

The Piagetian developmental characteristics relevant to an elementary robotics study 

are listed below (Piaget & Inhelder, 1969). 

1. Pre-operational, intuitive thought (K to grade 2)  

a. Egocentric – can only see their own point of view,   

b. Early causal reasoning – wanting to and starting to understand the 

“why” of things,  

c. Children know they have much knowledge but don’t know how they 

acquired it,  

d. Key cognitive characteristics:  

i. Centration – only focusing on one aspect or cause of a 

situation,   

ii. Irreversibility – children can not mentally reverse a sequence 

of events,  

2. Concrete operational (grade 2 to grade 5)  

a. Start solving problems logically but only with concrete objects,  

b. Inductive reasoning from cases to a general principle, 

c. Trial and error problem solving,  

d. Key cognitive characteristics (for concrete objects): 
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i. Seriation – the ability to sort objects by different 

characteristics,  

ii. Conservation – even if an object’s appearance changes, the 

quantity remains constant,  

iii. Transitivity for concrete objects – just as in mathematics, if A 

< B and B < C, the A <C,  

iv. Reversibility – the ability to mentally reverse a sequence of 

events or operations, specifically, objects that are modified can 

be returned to their original state,  

v. Classification – the ability to name sets (and subsets) based on 

objects’ characteristics,  

vi. Decentering – the ability to take in and reason about multiple 

aspects of a problem,  

3. Formal operational (Grade 6)  

a. Deductive reasoning from a general principle to specific cases,  

b. Logical and systemic problem solving,  

c. Key cognitive characteristics: 

i. Abstract thought – all the operations developed in previous 

stages can be done mentally without reference to concrete 

objects,  

ii. Metacognition – the ability to reflect on cognition itself.   

  Piaget’s groundbreaking work was later modified and improved by Neo-Piagetian 

researchers.   
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Neo-Piagetian Constructivism  

Neo-Piagetian researchers modified Piagetian theory to address issues that 

developed.  Data showed that there was wide individual variation in the stages and that 

the cognitive structures Piaget described were not turning out to be as universal as he had 

claimed (Bidell & Fischer, 1992; Case, 1991; Young, 2011). Research showed that the 

Piagetian stages are culturally influenced and are, at least to some extent, a product of 

Western culture and schooling (Rogoff, 2003).   This means that the results of this study 

are a product of their environment of Western educated students experiencing 

engineering projects every year in the context of their typical American curriculum so 

that universality across cultures cannot be claimed.   

Theorists proposed a variety of modifications to Piaget to address the issues 

found.  Bidell & Fischer (1992), in their skills theory, see cognitive development as more 

of a web than a linear stage model so that different children take different paths through 

the web.  They also pointed out that active instruction and learning in domain specific 

areas is cognitive development; one cannot just wait for brain development to occur. 

Bidell & Fischer (1992) also point out the need for developmental sequences in different 

domains.  This latter point reveals the possibility for the identification of a learning 

progression (Krajcik, 2011) for elementary engineering.    

The modification of universal structures to domain specific structures was also 

delineated by Case (1991) with his notion of Central Cognitive Structures (CCS) and by 

Demetriou, Gustafsson, Efklides, & Platsidou (1992) with their Specialized Structural 

Systems.  Case’s work, in particular, has relevance for elementary engineering research.  

He defines a progression from stage to stage as children move from sensorimotor, to 
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interrelational, to dimensional, to vectorial with each stage having its own general 

executive control structures in addition to the domain specific structures. Sensorimotor (1 

to 18 months), like Piaget’s sensorimotor stage, is centered on direct perceptions and 

actions such as seeing and grasping.  Case conceives of the interrelational stage as being 

characterized by the addition of representational thought.  For example, children can 

draw a picture or use words to stand for physical objects, feelings, and concepts.  In the 

dimensional stage, general relationships between two things can be established, such as 

numbers on a number line.  Finally, in the vectorial stage, many to many relationships 

can be established through things like abstract formulas that stand for the relationships. 

Case (1991) talks about progressing, within each stage, from one operation at a time, to 

two, and to more than two, and finally integrating the operations. Students, using this 

framework, would move from direct manipulation only (sensorimotor) to being able to 

draw their designs (representational) to simple cause and effect (dimensional) to 

multivariate reasoning (Kuhn, 2007) and systems thinking (Sullivan, 2008) (vectorial).  

This theory could shed light on the increasing ability of elementary students to plan and 

to project out the effects of their design decisions, which involves causal reasoning.  

Constructionism  

Constructionism (Papert, 1993) is the theoretical framework that underlies 

robotics (Papert, 2000; Papert & Harel, 1991).  Constructionism was defined by Papert & 

Harel (1991) as follows:    

Constructionism--the N word as opposed to the V word--shares constructivism's 

connotation of learning as "building knowledge structures" irrespective of the 

circumstances of the learning. It then adds the idea that this happens especially 
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felicitously in a context where the learner is consciously engaged in constructing a 

public entity, whether it's a sand castle on the beach or a theory of the universe.  

(p. 1)  

Constructionism can also be seen as combining designerly play (Baynes, 1994) 

and constructivism (Piaget & Inhelder, 1969). Robotics embodies constructionism in the 

following ways.   

• The use of programming and computers has a rich history intertwined with 

constructionism both in terms of the value of debugging as a process (Bers, 

Flannery, Kazakoff, & Sullivan, 2014; Sullivan, 2008) and the use of computer 

programming to explore big ideas (Papert, 2000).    

• Students construct artifacts as way to explore big ideas; “children … construct 

powerful ideas through firsthand experience” (Martinez & Stager, 2013, p. 18).   

• The use of the engineering design process gives children a balance of scaffolding 

and open-endedness that provides a “constructionist learning environment” (Bers, 

2008, p. 17).   

• Robotics, a constructionist learning environment, is a natural way to encourage 

epistemological pluralism (multiple ways of knowing) (Turkle & Papert, 1991).  

• Students document their own designs and processes and share out with a larger 

community, which provide a vehicle for reflecting on learning, an important tenet 

of constructionism (Bers, 2008; Papert, 1993; Resnick, 2007).   

Problem solving is a key part of robotics and the constructionist approach.   

Problem Solving and Design Process Models 

 Problem solving is defined by Cohen (1971) as: 
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Using basic thinking processes to resolve a known or defined difficulty: assemble 
facts about the difficulty and determine additional information needed; infer or 
suggest alternate solutions and test them for appropriateness; potentially reduce to 
simpler levels of explanation and eliminate discrepancies; [and] provide solution 
checks for generalizable value (p. 5).  
 
Numerous similar, heuristic problem solving strategies have been proposed for ill-

structured problems such a open-ended engineering challenges (Varnado, 2005).  One 

example is:  “recognizing the problem,  defining the problem, selecting a strategy, 

 attempting to solve by acting on a strategy,  drawing conclusions and checking results” 

(Varnado, 2005, p. 18).   Varnado (2005) synthesized the literature of technological 

problem solving strategies as a non-linear process containing the following steps:  

1. Identifying and defining the problem, 

2. Researching and analyzing relevant information, 

3. Generating and implementing solutions to the problem,  

4. Evaluating and revising the best possible solution. (p. 20) 

The engineering design process is an example of a general problem solving 

process in the specific context of engineering.  Engineering is defined as “: the work of 

designing and creating large structures (such as roads and bridges) or new products or 

systems by using scientific methods. (“Engineering - Definition and More from the Free 

Merriam-Webster Dictionary,” n.d.)”  Engineering problems are also defined by the 

inclusion of constraints.  For example, safety and a specific manufacturing cost limits are 

examples of common engineering constraints (Crismond & Adams, 2012). 

 One way to determine changes over time in children’s engineering skills is to 

characterize their engagement with the various stages defined by engineering design 

process models at different ages.  There are a variety of design process models that can 
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be used or modified for a longitudinal or cross-sectional case study of elementary 

robotics students that seeks to characterize and compare the engineering design processes 

of students at different ages in elementary school as they tackle open-ended engineering 

challenges. In this section, design process models and other relevant models are 

synthesized. For this study, I am only interested in engineering design process models, 

that is, specific delineations of the temporal stages of design that subjects use when 

tackling an engineering design task.   

One typical engineering design process model is shown below (see Figure 7) 

(Portsmore, 2011).  

 

Figure 7.  This shows a typical engineering design process model.  From Dr. Merredith 
Portsmore, Tufts Center for Engineering Education and Outreach.  Used with permission.   

Note the connecting lines across the circle, which indicate that the flow in the 

process may not be linear around the circle.  Note that brainstorming may not applicable 
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in the context of this study since it is a typically a social process and this study uses 

individual students working alone.  This model is an improvement on more linear models 

such as Mehalik, Doplet, & Schunn (2008).  Welch (1999) points out that studies that 

show linear, rational, deterministic design process models may not actually be followed 

by designers and even less so by novice designers.  Other models such as Resnick (2007) 

(see Figure 8) and Boehm (Martinez & Stager, 2013) spiral, which indicates that the 

process can repeat itself with the next iteration of the project.  In the Resnick model, 

some of phases are defined very broadly (such as create and play) which would be hard to 

discern.  Also, there is not a clearly defined evaluation (testing) phase.  
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Figure 8.  This figure shows a spiraling design process model from “All I Really Need to 
Know (About Creative Thinking) I Learned (by Studying How Children Learn) in 
Kindergarten” by M. Resnick, M., 2007, In Proceedings of the 6th ACM SIGCHI 
conference on Creativity & Cognition (p. 2). Copyright 2007 Association of Computing 
Machinery.   
 

EDP models vary according to the domain of interest with Boehm being very 

formal and applicable to large engineering projects and Resnick geared towards early 

childhood projects.  Resnick’s model is also more general, that is, it applies to learning in 

general as well as the design process.  In other cases, the model is essentially the same 

but some of the steps have different names.  This can be seen in the Learning By Design 

Cycle (Kolodner et al., 2003; Puntambekar & Kolodner, 2005).  Because the educational 

goal is learning science using design, this model, like that of Apedoe, Reynolds, Ellefson, 



 

 66 

& Schunn (2008) (see Figure 9 ) and Fortus et al. (2005) incorporates science inquiry into 

the model.  Since my primary purpose is teaching and understanding engineering design 

in children, design based science models may have extraneous aspects in terms of this 

study.  

 

 

Figure 9.  This figure shows a design process model with the inclusion of science 
processes and skills from “Bringing Engineering Design Into High School Science 
Classrooms: The Heating/cooling Unit” by X.S. Apedoe, B. Reynolds, M.R. Ellefson, & 
C.D. Schunn,  2008), Journal of Science Education and Technology, 17(5), p. 458.  
Copyright 2008 Springer.   
 
 The Next Generation Science Standards (NGSS), developed in the United States 

in partnership with twenty six lead states and currently being adopted and implemented, 

integrates both engineering and scientific practices as both content standards and 
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practices (“Next Generation Science Standards,” 2012).  Students are expected to be able 

to follow the enginering process as well as learn specific content on the engineering 

design process itself.  The NGSS engineering design philosophy is found in three places 

in the final documents.  First, NGSS defines a three step engineering process that 

increases in sophistication as students progress (“Next Generation Science Standards,” 

2012).  Figure 10, Figure 11, and Figure 12 show that the models increase in 

sophistication.   

 

 

Figure 10.  NGSS K-2 Engineering Design Model from Appendix I - Engineering Design 
in NGSS - FINAL_V2.pdf,  2013, retrieved 2015-04-06 06:24:30.   
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Figure 11.  NGSS Grade 3-5 Engineering Design Process Model from Appendix I - 
Engineering Design in NGSS - FINAL_V2.pdf,  2013, retrieved 2015-04-06 06:24:30.   
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Figure 12.  NGSS Grades 6-8 Engineering design process model from Appendix I - 
Engineering Design in NGSS - FINAL_V2.pdf,  2013, retrieved 2015-04-06 06:24:30.   

The common elements of define, develop solutions, and optimize appear at each 

grade level.  Problem definition adds an increasing focus on criterion and constraints over 

time.  Solution development increases in sophistication as students get older, adding 

multiple solutions, and then combining different possible solutions.  The optimization of 

solutions increases from simple testing to test and improve to systemic testing.  The 

inclusion of systemic testing as well as the increased ability to keep in mind multiple 

solutions is consistent with Piagetian developmental milestones (Piaget & Inhelder, 

1969).  As in other models with few steps, the multiple phases of more complex models 
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are combined.  For research purposes, however, a more fine-grained model is needed to 

better describe the engineering design processes of elementary students.   

NGSS also defines eight scientific and engineering practices that can also be seen 

as an engineering design process model (“Next Generation Science Standards,” 2012).  

The engineering practices are shown below.   

• Defining problems (for engineering) 

• Developing and using models  

• Planning and carrying out investigations 

• Analyzing and interpreting data 

• Using mathematics and computational thinking 

• Designing solutions (for engineering)  

• Engaging in argument from evidence 

• Obtaining, evaluating, and communicating information. (p. 1) 

Note that the definition of developing and using models above specifically includes 

prototypes, which are built in the robotics curriculum and engineering task used in this 

study.  However, in our case of LEGO robotics based open-ended challenges, this 

consists of the major iterative task of building and programming of the prototype and 

needs to be examined in more fine-grained detail.  These practices contain many elements 

of a traditional engineering design process model.   Example are defining problems, 

designing solutions, developing and using models (prototypes).  However, some of these 

practices, such as analyzing and interpreting data, are not typically seen in elementary 

LEGO robotics tasks.   
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 Finally, NGSS contains content standards for engineering design at each grade 

band.  For example, the grade 3-5 engineering design standards are shown below (“Next 

Generation Science Standards,” 2012).  

3-5-ETS1-1.  Define a simple design problem reflecting a need or a want that 

includes specified criteria for success and constraints on materials, time, or cost. 

3-5-ETS1-2. Generate and compare multiple possible solutions to a problem 

based on how well each is likely to meet the criteria and constraints of the 

problem. 

3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and 

failure points are considered to identify aspects of a model or prototype that can 

be improved. 

Again, the curriculum and task (described in Chapter 4 - Methodology) used in this 

study are consistent with the NGSS engineering design standards (“Next Generation 

Science Standards,” 2012).  

Models also vary with the number of steps and complexity.  Martinez & Stager 

(2013) have a simple three-step model they call TMI:  Think, Make, Improve.  The steps 

delineated in other models are subsumed into one of the three steps of the TMI model.  

For research purposes, however, a more fine-grained look at the engineering processes is 

needed.  Bers, Flannery, Kazakoff, & Sullivan (2014) use another child friendly variation 

(see Figure 13) in robotics studies of kindergarten students.  This model reflects the 

engineering design process of elementary students.  However, the difference between 

imagine and plan would be difficult to detect.
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Figure 13.  This figure shows a child friendly engineering design process model from 
“Computational Thinking and Tinkering: Exploration of an Early Childhood Robotics 
Curriculum”  by M. Bers, L. Flannery, E. Kazakoff, & A. Sullivan,  2014,  Computers & 
Education, 72, p. 155.  Copyright 2014 Elsevier Ltd.   

 Crismond & Adams (2012) reviewed existing design process models and 

attempted to synthesize extant models into a parsimonious and widely applicable model. 

They do not explicitly label these strategies a design process model because they want 

them to fit into extant design process models with different numbers of steps (Crismond, 

personal communication, March 16, 2014).  They define these nine parsimonious design 

strategies as part of their larger Informed Design Teaching and Learning Matrix.  

1. Understand the Challenge 

2. Build Knowledge 

3. Generate Ideas 

4. Represent Ideas 
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5. Weigh Options & Make Decisions 

6. Conduct Experiments  

7. Troubleshoot 

8. Revise/Iterate  

9. Reflect on Process  

For each strategy row, the authors created a rubric consisting of columns for 

novice and informed designers.  They also created columns of learning goals and 

teaching strategies.  For example, for the design strategy “Understand the Challenge”, 

novice designers “Treat design task as a well-defined, straightforward problem that they 

prematurely attempt to solve” while informed designers “Delay making design decisions 

in order to explore, comprehend and frame the problem better” (Crismond & Adams, 

2012, p. 748). At the elementary level, some of the strategies would be hard to discern 

and could be combined.  For example, generate ideas, represent ideas, and weigh options 

could be all consider planning.   

Different researchers have created EDP models that best reflect their theories, age 

group, area of interest (for example, application of science), and materials. In a clinical 

interview setting (Ginsburg, 1997) such as the one planned for the this study, a design 

process model based on observable behaviors (visually and with a think-aloud protocol 

(Ericsson & Simon, 1993)) proved the most useful for measuring how engineering 

processes change over time in the pilot study. See Figure 14 for a diagram of the 

engineering design process model I created to use in this study.  This model proved 

comprehensive and parsimonious for my pilot study.  The model is strongly based on 

those of Bers et al. (2014); Crismond & Adams (2012); and Portsmore (2011) 
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Figure 14.  Engineering design process model for study. Note that problem definition and 
sharing out are parts of the model but were not part of the task so they may not be coded.   

 The specific phases in my EDP models are:  problem definition, planning, 

researching, building, rebuilding, programming, reprogramming, evaluating, and sharing 

out.  Each phase is defined as follows:  

PLAN - subject was planning some aspect of their design, typically verbally.   

RESEARCH - researching a problem or possible solution.  Looking for parts can 

be considering research if it is affecting major design decisions before building starts.  

Otherwise, it is considered part of building.   

BUILD-NORMAL - normal building, which includes looking for parts unless the 

looking for parts was part of researching the feasibility of a potential design.    

BUILD-REBUILD - rebuilding (fixing) something that was built previously.  

This includes building it in a different way as well as reattaching a subsystem that fell 

off.   

PROGRAM-NORMAL - programming the robot.  
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PROGRAM-REPROGRAM - fixing a previous program.   

EVALUATE-PHYSICAL - evaluate by testing physically.   

EVALUATE-VERBAL - evaluate without any physical test but by talking.   

EVALUATE-VISUAL - evaluate by visual inspection without touching or 

talking.   

EVALUATE-SYSTEM - evaluate the whole system including the program by 

running the program, which typically moves the robot in some way.   

The distinction between building and rebuilding and between programming and 

reprogramming is germane to this study because the study seeks to identify the difficult 

parts of each session.  Evaluation, in the context of engineering, refers to the 

determination of current state of a design in relation to the overall or intermediate goals 

of the prototype or final engineering solution (Cross, 2008).  Different researchers use 

different terminology for this phase of the engineering design process.  Examples are:  

testing, evaluation, and troubleshooting.  

Note that problem definition and sharing out are parts of the model but were not 

part of the task so they are not expected be coded. In this study, the researcher defines the 

problem for the student.  Furthermore, although refinement of the problem definition 

typically reoccurs throughout the design process (Atman et al., 2008), for the simple task 

and constraints used in this study, this was not observed in the pilot study. Students 

continually share out as part of the talk-aloud protocol and so sharing out is not a 

naturally occurring part of the EDP in this context.   

Framework for Elementary Engineering Developmental Strengths and Challenges 

 



 

 76 

 The engineering design process model described previously (see Figure 14) above 

defines the codes that were used to characterize and compare the engineering design 

processes of the second and sixth graders. These codes were derived deductively using 

theoretical frameworks and verified in my pilot study.  (Note that additional sub-codes 

were also developed and can be found in Appendix A - Code Book.  There is no existing, 

coherent framework to describe the developmental strengths and challenges of 

elementary engineering students.  Therefore a coding scheme and tentative conceptual 

framework was developed using a combination (Barron & Engle, 2007) of deduction 

(from what existing frameworks suggested) and induction using techniques from 

grounded theory and developed during the pilot study (Charmaz, 2014; Glaser & Strauss, 

2009).   

 Figure 15 shows the initial conceptual framework that will be used to code the 

video captured in the study.  Basically, the framework defines factors that most strongly 

influence open-ended engineering tasks at the elementary level. Ellipses in yellow 

indicate codes and categories primarily derived from induction.  However, possible 

theoretical factors not revealed in the pilot study were added to the coding dictionary.  An 

example of this is magical thinking in the causal reasoning category.  Although not seen 

in the pilot study, it is believed to be a important stage in causal reasoning (Fuson, 1976).  

The blue engineering design ellipse was primarily deductively derived but verified 

experimentally in the pilot study.   

The categories of codes are:  
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• Engineering Design Process Skills - students’ utilization of the 

engineering design process.  Examples:  planning, researching, building, 

and evaluating (their design).   

• Problem solving - secondary aspects of problem solving as predicted by 

theory or as seen in the pilot study.  Examples:  the application of 

mathematics and science to solve an engineering problem and the use of 

systemic testing.   

• Causal Reasoning - causal reasoning skills seen.  Examples:  magical 

thinking, projection (prediction), and control of variables strategy.  

• Designerly Play - elements of fantasy play seen which is predicted to 

change from simple storylines (Fleer, 1999) or talking to the robot to more 

mature manifestations such as playful talk (Sullivan & Wilson, 2015)  as 

students age.  

The methodology section will further define the details of the coding and analysis 

process used to create this framework.  
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Figure 15.  Proposed, theoretical framework of key factors in elementary engineering 
open-ended challenges initially used for study.  Ellipses in yellow were primarily derived 
from induction.  The blue engineering design ellipse was primarily deductively derived.   

 Presumably, these factors have developmental, previous experience related, 

social-cultural, and ability related components.  Neo-Piagetian theory suggests that 

development and experience are intimately related and not separate (Bidell & Fischer, 

1992).  Therefore, it is not possible to directly trace cognitive changes seen in 

engineering design processes solely to development.  However, a secondary aim of this 

study is to investigate how developmental milestones might play important roles in age 

related differences in elementary engineering.  For example, in my pilot study, the second 

grade subject showed a marked tendency to persist in non-optimal design decisions, 

which can explained by Piagetian notions of centration (only being able to focus on one 

aspect of a problem at a time), irreversibility, and egocentrism.   

Many studies focus on composite cognition skills.  For example, sequencing 

(Kazakoff & Bers, 2012) involves centration and reversibility, which the authors 
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specifically call out.  I also infer that seriation is an important component to sequencing.  

Most researchers do not specifically trace composite cognitive skills to their Piagetian or 

neo-Piagetian building blocks. Furthermore, the developmental skills found by Piaget 

may omit important cognitive, affective, and physical skills important to elementary 

engineering.  For example, the application of math and science knowledge may prove 

important.  

Piaget’s constructivism showed that milestones could be found for logical and 

mathematics tasks and that children create their own knowledge (rather than being empty 

vessels that receive knowledge directly from an adults).   Constructivism is key to the 

development of constructionism, of which robotics is often cited as a prime example 

(Bers, 2008; Eguchi, 2012).  The neo-Piagetians (and others) determined that the 

milestones are not as universal and uniform as Piaget claimed but are more domain, 

culture, and child specific (Case, 1991; Rogoff, 2003).  For example, there does not 

appear to be one age when children “get” conservation (Case). Different conservation 

tasks are mastered at different ages.  However, it does appear that within any given 

domain, there are common, domain specific milestones that can be determined.  Reaching 

these is also a function of a general cognitive level Case calls central conceptual 

structures (Case, 1992).  The neo-Piagetians also pointed out the development is tied to 

learning experience and is not separate so domain specific milestone attainment is also a 

function of experience.    

What does this mean for this study of elementary engineering and development?    

This study will look for milestones and key factors in the engineering design processes of 

these students by looking at the two age samples of typical students.  These may or may 
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not map directly to Piagetian (or neo-Piagetian) milestones.  The mapping of engineering 

to cognitive milestones is an interesting area for future research but is not the primary 

purpose of this study. I hypothesize that the engineering design process, problem-solving, 

and causal reasoning differences that will be found have “behind” them a complex mix of 

the logical-mathematics Piagetian and neo-Piagetian defined skills, engineering specific 

skills, and composite skills, and also executive function skills such as cognitive 

flexibility.     

This study will characterize and compare the engineering design processes of 

typical grade 2 and grade 6 students in the context of a long-term, sustained elementary 

engineering curriculum.  In addition to the examination of engineering design process, 

related causal reasoning and problem solving skills will also be analyzed to see if and 

how they change by age and gender.  Based on the significant differences found in the 

pilot study and the examination of developmental frameworks, I hypothesize that 

significant changes in grade 6 students may be seen in:   

• Increased planning and research, 

• More use of drawing as a means of planning, 

• Increased ability to “start from scratch” and rework problematic designs, 

• Increased use of mental prediction to project out the effects of design decisions, 

• Increased use of inference to speed troubleshooting (as opposed to more concrete 

and trial and error approaches of younger students), 

• More systemic testing and systems thinking.   

Differences based on gender are harder to predict.  However, I conjecture that, despite 

the participation in yearly engineering projects, some decrease in self-efficacy due to 
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social-cultural pressures may be occurring even in elementary school.  Therefore, 

differences between boys and girls in their engineering design processes should increase 

from grade 2 to grade 6. 

Summary 

In summary, the extant research on design, engineering design, causal reasoning, and 

robotics comes out of constructivist, and constructionist frameworks. A 

constructionist/constructivist framework best informs my own research questions on the 

cognitive aspects of elementary engineering in the context of the EEC curriculum.  The 

goal of this study is to use the constructionist/constructivist theoretical framework 

combined with an inductively derived factor framework to gain an understanding of 

students’ processes as they undertake open-ended engineering challenges at two different 

ages. The long-term goal of this line of research is to optimize the teaching of elementary 

engineering taking student development and engineering experience into account.  The 

next chapter describes the techniques that will be used to answer the research questions.  
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CHAPTER 4  
 

 METHODOLOGY  

Study Design  

This section describes the methodology used to answer the following research 

questions which all take place in the context of an open-ended engineering challenge 

using LEGO robotics:  

1) Do grade 2 and grade 6 students’ engineering design processes and final 

products differ?  If so, what are the specific differences?   

2) Do male and female students’ engineering design processes and final 

products differ?  If so, what are the specific differences?   

3) If differences are not seen by gender and grade level, what relationships 

do explain the differing final products and engineering design processes 

of elementary students?   

 
 To meet the goal of understanding K-6 elementary engineering skills and process 

development, I conducted a study that had the following characteristics: 

• Studied students changes over time with either a longitudinal or cross-sectional 

study, 

• Unpacked student learning in detail with a case-study study design,  

• Focused on K-6 elementary students, 

• Focused on student cognition,  

• Analyzed the engineering design processes of students at different ages and by 

gender.   

In the pilot study I completed as part of my comprehensive exams, I conducted a 
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cross-sectional, cross-case, qualitative case study that examined two students (one at 

grades 2 and one at grade 6) as they implemented the same open-ended engineering 

challenge with age appropriate robotics and craft materials.  The materials were the ones 

that they have used in the classroom robotics curriculum (Heffernan, 2013) and changed 

according to the grade level. A cross-sectional design was used so the study could be 

completed within the dissertation timeframe.  (A longitudinal design would take four to 

five years to complete.)  Students were invited to describe and capture their initial ideas 

and plans through talking, writing, and/or drawing. The pilot study determined most 

relevant methodologies that will be used for this larger cross-sectional, case study of 

elementary robotics students that seeks to characterize and compare the engineering 

design processes of students at different ages in elementary school as they tackle open-

ended engineering challenges.  

The pilot study verified an engineering design process model (see Figure 14) that 

was appropriate for the elementary age range and LEGO robotics open-ended 

engineering task. The pilot study and literature review suggested that significant age 

related differences also exist in student problem solving and causal reasoning for open-

ended engineering challenges.  A more systemic approach (including some initial codes 

and categories) for characterizing these differences also emerged from the pilot study (see 

Figure 15 and Appendix A - Code Book.   

The pilot study determined the following:   

• The task, 

• The videotaping and interview process,  

• The transcription process,  
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• A coding scheme for the video,      

• An engineering design process data analysis process and outputs,   

The methodologies developed in the pilot study and additional methodologies for 

this study are described in this chapter. First, the context of this study is described.   

Curriculum, Instruction, and Materials 

Students were presented LEGO robotics materials both appropriate to their age 

and what they had used in class that year as well as craft materials:  writing utensils, 

paper, tape, wooden blocks, and post-it notes.   The second grade students used the Lego 

Education WeDo Construction Set 9580 and LEGO Education WeDo Resource Set 9585.   
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Figure 16.  LEGO WeDo Base Set used by grade 2 students.   
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Figure 17.  LEGO WeDo Resource Kit used by grade 2 students.   

 Sixth grade students also used the LEGO robotics materials that they use in class 

and that are appropriate to their grade level:  the LEGO Education NXT Base Set and the 

LEGO Education Resource Set.  The resources sets at both grade levels add many 

additional elements that greatly increase the design possibilities for each grade level.   
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Figure 18.  LEGO Education NXT Base Set used by sixth grade students. 
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Figure 19.  LEGO Education NXT Resource Set used by sixth grade students. 

Both kits are very similar in that they contain a controller, sensors, motor(s), 

gears, pulleys, wheels, axles, connector pegs, bricks, beams, and plates.  They differ in 

the number of pieces.  NXT programming is more complex but based on the same block 

based design.   The use of different materials for each grade level had a slight risk of 

influencing the design processes.  However, during the pilot study and in classroom 

practice, the differences in age, cognitive development, and building style seem to be the 

dominant factors rather than the particular materials.     

Students in this study are taught using the The Elementary Engineering 

Curriculum (EEC) (Heffernan, 2013), which uses a mediated learning approach (Suomala 
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& Alajaaski, 2002) combining teacher instruction, structured activities, and open ended 

engineering challenges.   

The EEC was designed with the following goals. 

• Engage students. 

• Provide a progression of programming skills. 

• Provide a progression of building skills. 

• Provide a progression of underlying science concepts. 

• Spiral back to reinforce programming, building, and science concepts. 

• Integrate technology, science, math and English/Language Arts. 

• Be teachable by classroom teachers. 

• Teach cooperative learning skills. 

• Mix teacher directed and student centered (open ended challenges) projects.  The 

teacher directed activities provide the base knowledge the children  build upon for 

the open-ended challenges.   

• Meet state and national standards.   

• Start in kindergarten and continue to grade 6.  Students experience one or two 

units a year, each consisting of six to eight class sessions.  

Students in kindergarten program Terrapin Logo BeeBots to:    

• trace letters,  

• count, add, and subtract on a large, laminated number line,  

• help their BeeBot get from one point to another going around obstacles.  

No building is required for BeeBots so the focus is on programing and the underlying 

cognitive skill of sequencing (Kazakoff & Bers, 2012).  
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Figure 20.  Terrapin Logo BeeBot. 

Grade 1 to grade 4 students use the LEGO Education WeDo kit.  Students 

typically start each grade with lessons based on the LEGO supplied curriculum and 

building instructions.  For example, grade 4 students make soccer players (kickers, 
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goalies, and fan) and take data with a mathematics-focused unit.  They then make and 

“sell” their own burglar alarm with an open-ended engineering challenge.  

 

 

Figure 21.  Example of a grade 4 WeDo based burglar alarm. 

 Grade 5 students, in a spiraling of the kindergarten curriculum, build and 

program an LEGO Education Mindstorms NXT robot to trace different geometric shapes 

on the floor.  Grade 6 students, again with a spiraling of their previous experience with 

gears, design and build a dragster to go as fast as possible using gearing up.   

Note that although students work in dyads in class to develop collaboration and 

communication skills (The Partnership for 21st Century Skills, 2002), this study focuses 

on individual cognition and building style so the students worked alone.   

Study Setting and Participants  
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The school is a small, rural elementary school (PK-6) located in Western 

Massachusetts with 158 students.  The school is 94.9% white.  19% of students have 

identified disabilities and 1.9% are English language learners.  25% are classified as 

low income.  (“MA DESE School Profiles,” n.d.).  This study examined the open 

ended engineering processes of twelve students, six at grade 2 and six at grade 6.  

Three boys and three girls were chosen at each grade level. Gender was assigned by 

how the students self-identified and the gender they were assigned by parents and 

teachers, which in this sample was the same.  Students were also chosen by who 

would do well with the think-aloud protocol, that is, they are able to verbalize their 

actions to the researcher.  Each student at each grade level is a typically developing 

STEM student.  This was determined by the classroom teacher and technology 

teacher (the researcher) looking at the following factors:  

1) MCAS (Massachusetts Comprehensive Assessment System) 

grades for science/engineering/technology and mathematics 

for sixth grade students, 

2) Report card grades for science and mathematics for second 

and sixth grade students, 

3) Student participation in STEM enrichment programs,  

4) Observation of students in the regular robotics curriculum.   

All second and sixth grade students participated in the research have been at 

the school since kindergarten so they have participated in the Elementary Engineering 

Curriculum for three and seven years respectively.   

Data Collection and Analysis Timing  
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Data collection in the form of videotaping took place in November and December of 

2015.  One subject was rejected due to her difficulty talking aloud as she worked.   A 

suitable replacement was found.  One subject was redone because he did not use any 

LEGO pieces initially.  However, he basically built the same ride, a roller coaster, with 

LEGO pieces. The second video session was used.   One subject was redone because the 

camera was not started initially.    Simultaneously filming and executing the talk-aloud 

and clinical interview was challenging at times.  The video camera had some issues with 

autofocusing from the particular angle and materials setup.  However, all video was 

usable.   

The audio recorder files were sent out immediately for transcription.  Segmenting 

took place in February to March of 2016 and coding took place from March to June of 

2016.  Data analysis took place in June and July of 2016.  However, it should be noted 

that data was also partially processed as it came in so that preliminary analysis was 

ongoing.   

Raw Data Collection  

Students were videotaped to capture their discourse and building/programming 

moves.  Through a think-aloud protocol (Ericsson & Simon, 1993) and semi-structured 

clinical interview (Brenner, 2006; Ginsburg, 1997)  their verbal discourse was captured. 

Subjects described their thoughts and actions as they performed the open-ended 

engineering task also using the same think-aloud protocol.  Subjects were gently 

reminded to think-aloud if they lapsed into silence.  The think-aloud protocol was used in 

the context of a clinical interview process to further probe their engineering design 

processes.   
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Ginsburg (1997) defines the clinical interview process this way:  the clinical 
examiner begins with some common questions but in reaction to what the child 
says, modified the original queries, asks follow-up questions, challenges the 
student’s response, and asks how the student solved various problems and what 
was meant by a particular statement or response. (p. 2) 
 

A similar process was used in this study.  However, the goal was to neutrally 

ascertain students’ thinking and processes so student responses were not challenged 

during the actual building.   The discourse, in combination with the videotape of the 

building and programming moves, comprised the main data for this study.  The use of 

“careful observation of the child’s work with ‘concrete’ intellectual objects” (Ginsburg, 

1997, p. ix) was critical to later analysis of the building of the engineering prototypes.   

Before students built their amusement park ride for the main part of the research, 

they did a warm-up task.  The purpose of the warm-up task was two fold. The study 

aimed to compare the engineering processes of typical second and sixth grade students. 

The task provided a baseline of student performance on open-ended engineering tasks.  

The task was an additional way to verify that students are typical performers.  For 

example, if a second grader shows advanced performance on the main task, the warm-up 

was checked to verify that this student is not a typical second grader.  The task also 

provided a means to teach and practice the talk-aloud protocol before the main task 

begins (Ericsson & Simon, 1993).   

In the task, students constructed a flat and sturdy roof to an existing set of walls 

using a set of provided LEGO beams and plates.  The provided beams and plates do not 

span the walls so students must use different techniques to make the roof.  They might 

create composite pieces or add interior walls to solve the problem.   After the warm up 

tasks was completed, students did the main amusement park ride task.  
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Figure 22.  Warm up task setup and materials. 
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Students were rated on their warm up task according to a rubric.  A rubric was 

created using video from two second graders and two sixth graders.  The rubric was 

further refined using the eight main subjects.  See Appendix D - Warm Up Task Rubric 

for the actual rubric.   

For both the warm and main tasks, the subjects were videotaped from the side.  

The researcher took field notes during the sessions.  The researcher also watched the 

video and took notes on each session (Erickson, 2006) before the transcripts are 

examined to get an overall impression of the sessions before coding in detail.   

For the main task, four questions were asked using a clinical interview 

methodology (Ginsburg, 1997) after the build is completed to see if additional reflection 

on the ask might yield more information.  Two questions ask the student what they found 

easy and difficult about the task.  Two age-appropriate questions ascertained the students’ 

self-efficacy for the completed task.  See Appendix B - Research Prompt for the post 

interview questions.   

Other data that helped characterize the designs and triangulated the video data 

was also captured: elapsed time of design activity, design artifacts, photos of the design 

in progress and the completed design, and the computer program the student developed.  

 This section has described the raw data that was captured and the context of that 

data.  The next section describes how the raw data was developed into data that could be 

analyzed.   

Derived Data  
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The raw data was transformed into derived data that could be analyzed.  The data 

can be classified into four different types: finished model design data, engineering design 

process (EDP) data, secondary EDP data, and summary rubric data.   

Finished model design data. The first type of data is data from the finished ride 

models and programs.  Each finished prototype (model) was analyzed in terms of its 

design attributes such as number of parts, types of parts used, and overall quality (using a 

rubric, see Appendix E - Finished Design Quality Rubric).   The capture and analysis of 

finished artifacts has been done previously in studies of this type (Portsmore, 2009; 

Portsmore & Brizuela, 2011; Stiles & Stern, 2001).   

The following data was captured or derived from the finished rides and programs.  

The first group of finished model design data was derived from the warm-up task:  time 

to complete, time rating, functionality rating, task process rating, task overall rating.  The 

ratings were determined using Appendix D - Warm Up Task Rubric.  The second group 

of finished model design data was from the main task of designing and building a model 

amusement park ride.  See Appendix E - Finished Model Design Quality Rubric 

for the criterion used to determine the ORIGINALITY, FUNCTIONALITY, and 

PROCESS ratings.   

NUMBER-PARTS - number of parts used in final prototype.   

• NUMBER-STEPS - number of steps/blocks in final program.  

• ORIGINALITY - rating of whether design did (or did not) shown originality (4 

highest to 1 lowest).  This criterion based rating captures how much the student 

did (or did not) use elements of designerly (creative) play (Baynes, 1994) in their 

model.   
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• FUNCTIONALITY - rating of how well the ride meets the design criteria.  This 

criterion based rating captures how well the student did (or did not) meet the 

engineering requirements and criterion of the design (Brophy et al., 2008; 

Crismond, 2001; McCarthy, 2012).   

• PROCESS - rating of the subject’s engineering design process specifically with 

respect to causal reasoning and planning (4 highest to 1 lowest). This criterion 

based rating gave a basic evaluation of the student’s EDP using some of the 

aspects discussed in Chapters 2 and 3 such as cognitive flexibility, causal 

reasoning, the application of mathematics and science.  In some of the 

visualizations, this is termed Preliminary EDP Rating since EDP was also later 

analyzed with the EDP timelines and the Summary Rubric (see below).   

• RATING - overall rating of finished ride quality; mean of above three aspects - 

originality, functionality, and process  (4 highest to 1 lowest).  Note that a four 

point scale was selected because it distinguishes sufficiently and uniquely 

between different levels of performance without having so many levels that would 

have made rating difficult (Arter & McTighe, 2001).   

• STABLE - final design is stable (1/0)  

• SYMMETRICAL - final design is symmetrical (1/0)  

• SCALE - final design is to scale (1/0)  

• USE-COMPUTER - subject used the computer to animate the prototype.  (1/0) 

• USE-CRAFTS - the subject used craft materials (includes blocks) in the 

prototype.  (1/0) 
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• USE-DIRECT-COUPLING - the ride uses direct coupling of motor to axle to 

move.  (1/0) 

• USE-GEARS - the ride uses gears to move.  (1/0) 

• USE-MOTOR - the rides uses a motor.  (1/0) 

• USE-PULLEYS - the ride uses pulleys between to move.  (1/0) 

• USE-SENSOR - the ride uses a sensor.  (1/0) 

• USE-PLANNING - the student produced planning artifacts on paper before 

building.  Post-make drawings are not counted.  (1/0) 

• TIME - elapsed time of build.  Not evaluated in any way but captured as a 

possible item of interest. 

While the design data captured important characteristics of each final 

product, data needed to be derived that captured the engineering design process 

(EDP) of students.   

EDP data.  The second type of data is called the engineering design process or 

EDP data. A model for the different phases of engineering design process of elementary 

students doing this open-ended, LEGO robotics, engineering task was shown in Figure 

14. It is briefly summarized here.   

PLAN - subject was planning some aspect of their design, typically verbally.  

Planning was also observed through drawing.   

RESEARCH - researching a problem or possible solution. In this context, 

research was usually seen as either a side build or moving a part into position to try out 

an idea in advance.   

BUILD - building or rebuilding.  Typically, building is looking for parts or 
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connecting parts.   

PROGRAM - Programming or reprogramming the robot using a computer.   

EVALUATE  - evaluate by testing physically, evaluating verbally, evaluating 

visually, or testing the whole system by running the program.   

Although not analyzed specifically in this study, the BUILD, PROGRAM, and 

EVALUATE codes were actually coded as a code and sub-code combination.  For 

example, BUILD was coded as either BUILD-NORMAL or BUILD-REBUILD.  

PROGRAM was coded in the same way.  EVALUATE has four sub-codes:  

EVALUATE-PHYSICAL, EVALUATE-VISUAL, EVALUATE-SYSTEM, and 

EVALUATE-VERBAL.   

There were two EDP codes that were not planned but were added. SHARE-OUT 

and PROBLEM-SCOPING.  Problem scoping is defined by (Atman et al., 2008)  “as the 

stage of the design process during which designers explore the relevant issues and 

set the boundaries of the problem they will continue to solve”  (p. 235).  The 

problem, although open-ended, was very well defined so there were a very small number 

of problem scoping instances observed.  These instances were coded but not analyzed 

since they were so few in number (nine short instances in six subjects).  It was anticipated 

that the SHARE-OUT of the project would occur in the post-make interview and would 

not be coded.  However, a few students did significant, unprompted sharing out in the 

form of post-make drawing so these instances were coded and analyzed.  Other codes can 

help describe important, but secondary aspects of the students’ engineering design 

process. 

EDP secondary data.  The third type of derived data is called the secondary EDP 
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data.  The theoretical frameworks, literature review, and pilot study predicted a large 

number of secondary codes.  However, many were not observed.  A smaller number of 

secondary codes that occurred frequently were coded.  These were PROJECTION 

(prediction), INFERENCE, CREATIVE-PLAY, PERSISTENCE, SCALE, 

SYMMETRY, STABILITY, CONNECTOR-META, PLAN-AHEAD, MATH, and 

SCIENCE.  Most of these also were coded with a value:  positive effect (+), neutral effect 

(=), and negative effect (-).  The extant secondary codes were extracted and examined as 

part of the summary rubric data.   

Summary rubric data. The fourth and final type of developed data is the 

summary rubric data.  This important rubric (see Table 1) was developed during the data 

analysis phase of the research to reflect the important aspects of the EDP process and the 

model build that were emerging after it became clear that neither grade level, gender, nor 

the EDP timelines were determining the finished model ride quality. What did explain the 

clear differences in finished model rides and EDP process?  It became clear that a group 

of different factors was involved and that an instrument to measure these factors was 

needed.  This instrument was the summary rubric.    

The summary rubric was developed by looking at a list of potential independent 

variables (factors) that might explain the differences in EDP timelines and finished model 

quality (part of the finished model design data).  A list of potentially significant 

independent factors was produced and used as a way to look for correlations in EDP 

patterns, ride quality, and these variables.  The possible factor list was constructed by 

considering important and repeated observations of phenomenon when viewing the video 

and considering the final model rides.  Most of these were already theorized and were 
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already described in the code book:  causal reasoning, application of mathematics and 

science, EDP knowledge, use of design principles (of scale, symmetry, and stability), 

planning, LEGO structural knowledge, and cognitive flexibility.    Some were potentially 

important differences in the final model rides that might explain the differences in EDP 

processes: the use of a motor (or not) and the use of computer (or not).   Finally, build 

complexity emerged as important factor that had not been coded explicitly but had a basis 

in the theoretical framework, previous research, and my experience as a robotics teacher.   

In the context of open-ended design problems such as the amusement part ride 

task studied here, students choose what they want to build, which defined the ride 

complexity.  According to Funke (1991) and  Jonassen (2000), the most relevant aspects 

of problem (or build) complexity are the structuredness of the problem, the number of 

issues, functions, or variables in the problem, and the degree of connectivity between the 

variables.  The ride challenge and robotics in general, depending on what the student 

chooses to build, can be high complexity since they are ill structured, have a high number 

of variables, functions, and issues, and can have connectivity between the variables.  

Furthermore, systems understanding is needed to fully understand a complex systems 

such as LEGO robotics (Sullivan, 2008).  The build complexity rating was based on these 

factors in the particular context of this challenge.  The possible factor list was narrowed 

in a summary rubric (see Table 1 - Summary Rubric) to seven factors by a process 

described in the next section.  In this case, a three point rating scale was used.  There was 

not sufficient variation especially in the EDP timelines themselves to distinguish between 

four different ratings (Arter & McTighe, 2001). 
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  Low Medium  High  
Structural 
Knowledge 

 Student does not 
show knowledge 
of LEGO 
connector parts 
and connection 
techniques.  
Student is 
unable to learn 
new parts and 
techniques when 
needed.  No 
knowledge or 
use of 
programming.   

Student has 
some knowledge 
of LEGO 
connector parts 
and connection 
techniques. 
Student 
sometimes 
learns new parts 
and techniques 
when needed.  
Some 
knowledge or 
use of 
programming.   

Student has 
extensive 
knowledge of 
LEGO 
connector parts 
and connection 
techniques.  
Student 
consistently 
learns new parts 
and techniques 
as needed.  
Extensive 
knowledge or 
use of 
programming.   

Engineering 
Process 
Skills  

Subskills  

 Math/ 
Science 

Student does not 
apply math or 
science to a 
problem.   

Student 
sometimes 
applies math or 
science to 
successfully 
solve a problem. 

Student 
frequently 
applies math or 
science to 
successfully 
solve a problem. 

 Design 
Principles 

Student does not 
mention or use 
scale, symmetry, 
or stability in 
their build.   

Student 
sometimes 
mentions or uses 
one of scale, 
symmetry, or 
stability in their 
build.   

Student 
frequently 
mentions and 
uses two or 
more of scale, 
symmetry, and 
stability in their 
build.   

 Other 
Process 

Student does not 
use other 
techniques and 
strategies such 
as control of 
variables, 
troubleshooting 
tactics, systemic 
testing, and 
engineering 

Student 
sometimes uses 
other techniques 
and strategies 
such as control 
of variables, 
troubleshooting 
tactics, systemic 
testing, and 
engineering 

Student 
frequently uses 
other techniques 
and strategies 
such as control 
of variables, 
troubleshooting 
tactics, systemic 
testing, and 
engineering 
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design process 
knowledge.   

design process 
knowledge.   

design process 
knowledge.   

Executive 
Function 
Skills  

Casual 
Reasoning  

Student usually 
makes incorrect 
predictions and 
inferences.   

Student 
sometimes 
makes correct 
predictions and 
inferences.   

Student makes 
frequent and 
correct 
predictions and 
inferences.   

 Plan-Ahead Student is a 
serial builder 
using trial and 
error who 
seldom plans 
ahead.   

Student shows 
evidence of near 
term planning 
ahead.  Student 
uses a clear mix 
of trial and error 
and planning.  
Try and classify 
as serial builder 
or planner but 
put in this 
category if there 
is a clear mix of 
serial and plan-
ahead building 
styles.   

Student shows 
evidence of 
planning the 
complete ride 
(as a system) 
ahead of time. 
Student 
consistently 
shows evidence 
of planning their 
next step.   

 Cognitive 
Flexibility  

Student shows 
evidence of 
cognitive 
inflexibility 
(non-optimal 
persistence).  
Student seldom 
rethinks 
strategies even 
when there are 
persistent 
failures.    

Student shows 
some evidence 
of cognitive 
flexibility.  
Student 
sometimes 
rethinks 
strategies when 
there are 
persistent 
failures.    

Student shows 
cognitive 
flexibility.  
Student 
frequently and 
creatively 
rethinks 
strategies when 
there are 
failures.    

Build 
Complexity 

 The ride is not 
animated (no 
computer, no 
motor).  There 
are no 
decorative 
elements or 
mini-figures.  
There are a 
small number of 
parts put 

The ride is 
animated with 
one motor and 
computer.  
There is some 
decorative 
elements or 
mini-figure use. 
The ride uses a 
simple program.   
There are a 

The build in 
animated with a 
computer, 
motor, and uses 
gears.  There are 
many decorative 
elements or 
mini-figures. 
The ride has 
multiple motors 
or has a sensor. 
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together simply.   moderate 
number of parts 
and subsystems.     

The ride uses a 
complex 
program.   There 
are a large 
number of parts 
and subsystems.    

Table 1.  Summary Rubric. 

 
Now that the derived data has been defined, the methodology used to actually 

create the derived data will be described.  

Derived Data Process  

The next section describes the process that transformed the raw data into derived 

data that was further analyzed.  

Finished model design data.  Before each model was taken apart for the next 

student, the number of LEGO parts was counted.  Photographs were taken from a number 

of different angles of both the intermediate building and the finished product.  A 

photograph was also taken of the robotics computer program the student may have 

created by simply taking a photograph of the screen.  All the different aspects of the build 

(such as number of parts, motor used, etc.) were recorded in a Microsoft Excel 

spreadsheet.  Finally, the warm-up task and ride models were evaluated using their 

respective rubrics.   

EDP data - transcription, time stamp, and segmentation process.  The video 

sessions were transcribed by a transcription service.  [Eight and a half hours of separate 

audio recorder files totaling were extracted and submitted to the transcription service]. 

The transcriptions were not literal so that “ums”, extra “likes”, and other non-essentials 

words were not transcribed.  When the researcher and subject spoke at the same time, a 
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reasonable facsimile was produced.  Because the video was watched many times to 

capture the building moves of each student, the use of a transcription service was not a 

problem in terms of the researcher not being intimately familiar with each session.  An 

initial pass consisted on watching the video of each session and taking field notes 

(Erickson, 2006).   

 Next, the transcripts were time stamped and the verbal output segmented.  The 

purpose of segmenting is to, “to break the verbal text into units (or segments) that can be 

coded with a pre-defined coding scheme” (Atman & Bursic, 1998, p. 332).  Verbal output 

was generally easy to segment because it consisted of short question and answer snippets.  

In this study, there are two different “tracks” of data.  The first is the verbal output 

of the subject that is obtained via the talk-aloud protocol (Atman & Bursic, 1998; 

Ericsson & Simon, 1993).  Other studies of this type only look at the verbal output of 

subjects who work in teams (Atman & Bursic, 1998; McFarland & Bailey, 2015).  

Because this study is interested in comparing individuals and because the physical 

building is so important to LEGO robotics, the physical building and programming 

activity of each subject were transcribed by the researcher with some assistance by 

another graduate student. By examining the building moves of a number of subjects, a 

unique physical move segmenting scheme was created and continually refined. [fix]  

Physical move segmenting rationale.  Another pass consisted of segmenting the 

physical move activity into units that could subsequently be coded.  Segmenting occurs at 

at a lower level than the coding and requires minimal interpretation, unlike coding.  

Because this study looks at transitions between EDP phases, a single segment may 

contain multiple contiguous physical activity segments of the same type.    Physical 
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activity descriptors were defined to have a similar level of atomicity.  They were 

confined to the subjects’ use of their hands.  There was not sufficient and consistent data 

of the subjects’ gaze to include that information.  Note that connecting parts included a 

direct acquisition of a LEGO part without searching through parts.  The lower level 

physical activity descriptors ultimately allowed interpretive coding of EDP phase 

transitions in combination with verbal output segments.  EDP phase transitions always 

occurred at segment boundaries.   

Segmenting rules.  Verbal activity was segmented by the snippet or interaction.  

In other words, talk was segmented when there is a change of speaker.  For longer subject 

text in a transcription, talk was broken into additional segments by long pauses (more 

than 2 seconds) or clear changes of topic at (Atman & Bursic, 1998; McFarland & 

Bailey, 2015).  Verbal segments were also split into multiple segments during the coding 

process if there was an EDP transition detected in the middle of an existing segment.   

Physical activity was transcribed by activity descriptors (shown in italics below).   

When the physical activity changed, a new timestamp and descriptor was inserted.  

Descriptors were put in {} to differentiate them from codes, which were enclosed in 

square brackets.  Multiple contiguous instances of the same physical activity did not need 

to be segmented because EDP transitions occured only when physical segment type 

changed.    Activities needed to last at least one second to be segmented.   

• no_activity - no activity with hands for more than 1 seconds.  This was also used 

if subject is absently moving or holding model or parts with no apparent purpose.    
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• pointing - pointing at a part, model, or drawing with hands, pencil, or other object.  

Pointing can be gesturing if it is used to demonstrate movement or the intended 

actions of a model rather than simple pointing.   

• gesturing - acting out or demonstrating something with hands or other object 

without model.  If gesturing involves the model, use moving.  If gesturing is not 

about the model or parts, use no_activity.   

• searching for parts - note that subject could be holding model while searching, 

searching is main activity.  If less than 1 second and the subject subsequently 

connects parts, use connecting.   

• measuring parts - includes counting holes and comparing one part to another.  In 

some cases, when subjects move parts close to another part to check the size, this 

is considered measuring.   Includes counting or measuring with their drawing.   

• crafting  - making something.  Could be using scissors to cut something, typically 

string or paper, taping, folding papers, etc.   

• connecting parts - includes getting parts quickly without searching, includes 

reconnecting parts that have fallen off.  Includes rare cases where part is not 

actually connected, for example, getting and putting down a base plate.  Includes 

disconnecting parts.   

• moving model  or parts - includes picking up model if it fell over, includes 

manipulating model or parts of model in some way to evaluate it or demonstrate 

it, includes touching model. If absently moving or holding model or parts, use 

no_activity.   

• programming -using the computer to add or modify a program.    
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• downloading program - including connecting USB cable, NXT only; WeDo 

programs are not downloaded but count connecting cable as downloading.   

• starting robot - includes finding correct program.   

• stopping robot - stopping the computer program.   

• drawing - drawing a plan for or drawing a post-build artifact of a model.    

Transcribing (segmenting) of physical activity and talk is independent. If change 

of physical activity occurs at the same time as a verbal segment, physical activity 

descriptors were inserted after the timestamp.  Otherwise, physical activity timestamps 

and descriptors were put after verbal segments if they overlapped (but not exactly).   

Time stamps were recorded for all parts of the transcript that were later coded.  The 

problem introduction prompt and the post-interview were not time-stamped, segmented, 

or coded.   A fully time-stamped and segmented extract of a transcript is shown below.  

[00:07:14]	{connecting}	Girl	05:		I	think	this	is	going	to	be	the	last	layer,	and	then	I'm	
going	to	put	the	base	through	the	middle.		

[00:07:18]	{searching}		

[00:07:19]	{connecting}		

[00:07:23]	{moving}		

[00:07:24]	Girl	05:	Wait	a	second.	(Lifts	structure)	

Researcher:	 What	did	you	notice?	

[00:07:29]	Girl	05:	It's	uneven.	
 

 Field notes were taken during each pass of initial viewing, time-stamping, verbal 

segmenting, and physical move transcription/segmenting.  

EDP Code Development  
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For guidance in analyzing students’ engineering design process and skills change 

by age, the literature review revealed an EDP analysis technique (Atman et al., 2007; 

Crismond, 2001; Welch, 1999) that was modified to characterize the design processes of 

elementary students. A deductive approach (Barron & Engle, 2007) defined an initial set 

of codes and sub-codes was used that describe the engineering design process for the 

pilot study.  This was shown in the pilot study to accurately capture the engineering 

design process of each student.  It was also used for this study.  

As an example, one main EDP code is BUILD.  BUILD has two possible sub-

codes:  BUILD-NORMAL and BUILD-REBUILD.  The schema of EDP codes and sub-

codes was created so that the primary EDP could be examined as well as a more refined 

look that included subcodes of many EDP phases.  

The pilot study used an inductive analysis (Welch, 1999) to produce additional, 

secondary codes that might shed light on the processes related to not directly captured by 

the EDP codes.  For example, a number of codes were developed that identify and 

describe causal reasoning activity.  The literature review examined studies that identify 

possible skills (and hence possible codes) that may impact students ability to realize their 

design ideas such as sequencing (Kazakoff & Bers, 2012), planning (Portsmore, 2011), 

causal reasoning (Sullivan, 2008), and systems thinking  (Sullivan).  Therefore, the initial 

coding scheme is a combination of inductive codes produced in the pilot and deductive 

codes found in the literature review.  The codes were refined iteratively (Glaser & 

Strauss, 2009) during the pilot study.  For this study, the pilot study codes were analyzed 

using axial coding, which defines categories for each code and the relationship between 

the categories (Charmaz, 2014; Glaser & Strauss, 2009). See  Appendix A - Code Book 
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for the categories and codes developed and their definitions. Not all codes were detected 

and one additional secondary code was added (PLAN-AHEAD) during the study.   

EDP Coding  

Transitions between EDP phases were determined by both the student’s physical 

building moves and their verbal output. For example, if the student stops building with 

the LEGO parts and moves their design to see it works, it is clear that a transition from 

building to evaluation has occurred.  

As coding commenced, it became clear that there could be multiple interpretations 

of the phases (for example, building and research) in some cases. If a student did a side 

build to see if an idea was plausible, that was coded as research.   The context had to be 

examined.  In this case, what you see in one moment looked like building but was really 

research when the clip was examined in a broader context. That is, it was sometimes 

necessary to consider more video around the smaller clip.  The key was to be consistent 

across subjects.   

Also, it became clear very early on that the study would have to account for the 

frequent occurrence of overlapping and different verbal and physical EDP phases. For 

example, a student could be building while, at the same time, talking about their plan for 

what comes next.  In the example below, Girl 5 plans as she is rebuilding and then 

evaluates when she is building.   

[00:34:14]	{connecting}	[BUILD-REBUILD]	(Tweaks	connections.)	

Researcher:	 Trying	to	figure	out	something	with	the	people?	

[00:34:16]	{moving}	[2:PLAN]	Girl	05:	Yes,	something	with	the	people.	How	I'm	going	to	
get	them	upright	for	the	whole	ride,	and	if	I	can't	figure	that	out.	
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[00:34:26]	[2:END]		

[00:34:28]	{connecting}	[BUILD-NORMAL]		

Researcher:	 Oh	yeah.	Just	like	a	real	Ferris	wheel.	

[00:34:29]	[2:EVALUATE-VERBAL]	Girl	05:	Yeah.	The	good	thing	about	this	it's	not	really	a	
real	Ferris	wheel.	It's	a	discombobulated	Ferris	wheel.		

[00:34:42]	[2:END]		

	
There were a few possible solutions to handling the overlapping verbal and 

physical phases.  The first would be to choose the dominant phase and ignore the 

secondary phases or give priority to the physical or verbal track.  However, important 

information would have been lost and it is not clear that one is more important than the 

other.  The second way would be to create new codes that were composites of each extant 

combination of codes (McFarland & Bailey, 2015).  This solution was rejected because 

of the large number of possible combination and the desire to clearly represent what 

actually occurred graphically.  The solution chosen represents each phase independently 

and exactly captures the overlapping phases.   For example, let’s say we have the 

following data. 
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Figure 23.  Sample Excel EDP data. 

 

First, a scatter chart was created in Microsoft Excel.     

 

Figure 24.  Sample EDP scatter chart. 
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The final step was to use custom error X-axis bars that point to the duration of 

each phase occurrence to show the duration of the phase. 

 

Figure 25.  Sample EDP timeline.   

Multiple coding passes were made to ensure consistent and complete application 

of codes.  A second coder was used to refine the coding dictionary.  Over 80%  (83.3%) 

intercoder reliability was achieved using Krippendorff’s alpha (Freelon, 2010; 

Krippendorff, 2007) on 20% of the video. 3% of the video was coded together.  Then 7% 

was coded independently with the two coders meeting after to resolve differences and 

refine the code definitions.  Next, 10% was coded independently and used to calculate the 

intercoder reliability.  The 80% threshold was the same or better than similar studies with 

college level engineering students (Atman et al., 2005).  Systemic errors were counted 

once.  Given that coders were coding potentially separate verbal and physical tracks, the 

reliability achieved was considered high.  Once the reliability was calculated, the author 

0	

1	

2	

3	

4	

5	

6	

0:00:00	 0:00:43	 0:01:26	 0:02:10	 0:02:53	 0:03:36	 0:04:19	

Sample	EDP	Timeline	EXCEL	
Technique	 		

Code		



 

 115 

coded the remaining 80% of the transcripts.  A total of 312 pages of coded transcripts 

were produced.   

As the transcription and coding processes progressed, a research journal was 

created (Galman, 2007) to track important process ideas and emergent themes.  

See below for an extract of the sixth grade transcript.  The EDP codes were placed 

directly after the timestamps and the secondary EDP-related codes were placed at the end 

of each segment for clarity.  The building moves, as well as the discourse, were 

transcribed and inserted using curly brackets immediately after the timestamps.  Brief 

notes, if any, were places in parenthesis.  Longer notes were placed in the research 

journal.  

[00:17:01]	[BUILD-REBUILD]	{connecting}		

[00:17:03]	[2:EVALUATE-VERBAL]	Boy	05:		I	put	this	on	backwards.	[INFERENCE+]		

[00:17:04]	{moving}	[EVALUATE-PHYSICAL]		

[00:17:05]	[2:END]		

[00:17:07]	[BUILD-REBUILD]		

[00:17:14]	{moving}	

[00:17:15]	{connecting}		

Researcher:	I	notice	you're	keeping	your	design	so	that	it's	usually	the	same	thing	on	the	
other	side,	all	the	time.	

[00:17:32]	{gesturing}	[EVALUATE-VERBAL]	Boy	05:	Yeah,	so	it's	not	off	balance.	If	it's	off	
balance,	it	has	more	likely	to	tip	over.		[PROJECTION+]	
[IMPORTANT][SYMMETRY+]		

[00:17:34]	{connecting}	[BUILD-REBUILD]		

[00:17:40]	[EVALUATE-PHYSICAL]		{moving}		

[00:17:45]	[BUILD-NORMAL]	{connecting}		
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 The relationship between segments and codes is interesting and a somewhat 

complex one. Certain segments typically indicate a possible EDP phase transition.  Here 

are some examples.  

• {moving}  - typically indicates EVALUATE or RESEARCH 

• {connecting} and {searching} - usually indicates BUILD  

• {no_activity} - indicates WAIT or PLAN 

• {gesturing} - usually indicates PLAN  

See Figure 26 for an illustration of the relationships between segments and codes.   
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Figure 26.  Segmenting and coding example.   

 
 The first BUILD code contains two physical segments that both indicate building 

as well as a verbal segment that, in this case, also indicates the same EDP phase.  

However, the second BUILD code shows a simultaneous and different verbal code of 

PLAN while the subject is connecting parts.   Note that the overlapping code starts with 

“2:” to help with the later computer program extraction of the codes.  The subject then 

stops connecting and is only planning.  The last part of the example shows a RESEARCH 

EDP phase that consists of connecting pieces and moving pieces.  The RESEARCH code 



 

 118 

counts the evaluation of a side build as part of research.  This final part also has an 

example of the verbal track overlaps and extending beyond the physical track.  The code 

extraction and visualization process (described later) handles all these cases accurately.  

Before that is discussed, however, the methodology used for secondary codes is briefly 

described.   

Secondary EDP Coding 

Note in the transcript above that secondary EDP codes were placed at the end of 

segments.  Most secondary codes have a value of +, =, or - indicating a positive, neutral, 

or negative effect. Three subjects were fully coded with secondary EDP codes.  

Code Checking, Extraction, and Importing Into EXCEL  

Two  “little programs” were developed (based on the pilot study program) in the 

Python programming language (Summerfield, 2010) to extract the timestamps and codes 

from the transcripts.  The two programs are a code scanner and a code extractor.  See 

Appendix F - Code Scanner Program  and Appendix G - Code Extraction Progrm for the 

actual Python code.  The code scanner checks for valid codes and common errors.  The 

extractor program creates four output files for each transcript:   

Main Codes - timestamps and main EDP codes,  

Sub-codes - timestamps and EDP codes and EDP sub-codes,  

EDP Related Codes - timestamps and EDP-related problem solving and causal 

reasoning codes.   

Error log - file of any errors encountered.  These are also shown on the screen.   

Here is an example of some of the error detection output of the code extractor 

program.   
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timeStamp Error in line  [00:13:32] {moving} [RESEARCH] [2:PLAN] Girl 06: 
If I can put this together- 
 
 
Unexpected S Phase expecting store  in line [00:13:33] [2:END]  
 
 
timeStamp Error in line  [00:13:34] [WAIT] Researcher: Let me press this for 
you.  [HELP]  
 
 
timeStamp Error in line  [00:13:50] [2:PLAN] Girl 06: And then so I could do it a 
little lower, so it wouldn't fall.  
 
 
Unexpected S Phase expecting store  in line [00:13:54] {connecting} [2:END] 
[BUILD-REBUILD]  
 

When coding errors were detected in either program, they were corrected and 

rechecked.  The improved error detection in this study improved the validity of the data 

and the reliability of the results.   

The main code files were then imported into Microsoft Excel.  See below for a 

sample extract of the main codes Excel file.  

Time	 Elapsed	 Code	 Code		
0:01:48	 0:00:41	 PLAN	 6	
0:02:29	 0:00:08	 BUILD	 4	
0:02:37	 0:00:59	 PLAN	 6	
0:03:36	 0:00:20	 BUILD	 4	
0:03:56	 0:00:11	 PLAN	 6	
0:04:07	 0:01:07	 BUILD	 4	
0:05:14	 0:00:11	 PLAN	 6	
 

The phase code number is needed for later analysis using Excel, specifically to 

produce the EDP timelines.  Elapsed times for each phase for the main and sub EDP 

codes were calculated in Excel.  Once the EDP data was imported into Microsoft Excel, 

visualizations were produced that could be analyzed.   
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Visualization Production  

 Once the data was imported into Microsoft Excel, a number of different types of 

visualizations were produced:  finished model design data graphs, EDP timelines, and 

EDP count, frequency, and duration graphs.  

Finished model design data graphs.  Graphs were produced using Microsoft 

Excel that show the data about the finished model such as number of parts, parts used 

(motor or no motor), originality rating, functionality rating, EDP rating, and other 

attributes of the finished amusement park ride models by gender and by grade level.  

Because no significant differences were found by gender or grade level but significant 

differences did seem to be occurring, additional graphs were produced by LEGO 

experience and EDP rating, which were added as new, possibly significant, independent 

variables.   LEGO experience was rated using a questionnaire that was filled out by 

second grade parents and sixth grade students. See Appendix H - LEGO Experience 

Questionnaire for the questionnaire and rating scheme.  The finished model design data 

showed attributes of finished design.  However, a big part of this research was to 

understand the difference engineering design process of elementary students.   

EDP timeline graphs.  Using the EDP data in Microsoft Excel, individual graphs 

were produced that show the engineering design process phase by the elapsed time.  

Sample data and the corresponding sample EDP timeline are shown in Figure 23 and 

Figure 25 respectively.  

EDP count, frequency, duration graphs, and other data. Additionally, 

individual graphs for each subject were produced that show the count of each EDP phase, 
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the time spent in each EDP phase, and the average duration (in seconds) of each EDP 

phase.  See the Results Chapter for examples.  

 While it was initially planned to produce additional visualizations of aggregated 

EDP and secondary EDP data by the two initial, independent variables of grade level and 

gender, these were not done because significant differences were not being seen.  A 

summary rubric was created that rated the factors that did seem to the driving the 

differences seen in EDP timelines and final model quality.  These factors are the build 

complexity, the LEGO structural knowledge possessed by the student, three specific 

executive function skills, and three specific domain specific EDP skills.  [The process of 

creating and using the summary rubrics is explained in more detail in the next section.]  

Figure 27 shows the overall relationship between the different data produced and 

analyzed in this study.  Moving up in diagram indicates the timing of the data production 

process and also the increased level of abstraction from the actual sessions.    
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Figure 27.  Overall study data taxonomy.   

Now that that data and derived data process has been fully defined, a short 

description of the analysis process used is given.  

Data Analysis Process  

 First, the finished model data graphs were examined for significant differences by 

gender, grade level, LEGO experience, and EDP rating.  The next and more complex step 

looked at the frequency and distribution of events in the EDP timelines of the twelve 

students.  This methodology is called inductive contrastive analysis (Goldman, Erickson, 
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Lemke, & Derry, 2007).   Basically, patterns were searched for in the EDP timelines of 

students.  A similar approach has been using by others in studies of the design process of 

undergraduate students (Atman et al., 2007, 2005; Atman & Bursic, 1998) and in 

novice/expert engineering studies (Crismond, 2001).  As an example, Atman et al. (2007) 

found what they considered an ideal EDP timeline shape by looking at EDP timelines of 

expert practitioners and the undergraduate engineering students in the study.   

The next step was to again look for patterns in the EDP count, frequency, and 

duration graph of the students by a number of various factors.  Since the original 

independent variables of gender and grade level were not showing significant differences, 

both the EDP timeline and EDP count, frequency, and duration graphs were labeled with 

a variety of potential independent variables (also called factors and described in previous 

section above) and sorted by each variable in turn to see if patterns emerged.  One 

example of the twelve visualizations created for this purpose is shown below.    
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Figure 28.  EDP timeline summary. 

 



 

 125 

 

Figure 29.  EDP count, frequency, and duration summary. 

 When a pattern did emerge, a summary rubric (see Table 1 - Summary Rubric) 

was used that measured the seven most relevant factors for each design and design 

process and appropriate visualizations were created that show some of the relationships 

between the seven factors.  The Results and Discussion chapter will describe the 

relationships that were found.    
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CHAPTER 5  
 

 RESULTS  
 

Warm Up Task Results  

 
Recall that the warm up task served two purposes:  to help students understand 

and execute the talk-aloud protocol and to serve as a check on the students’ skills, 

process, and knowledge when compared to the main task.  For the latter, there was a 

close correlation between the tasks. 

 

Figure 30.  Warm and main task ratings. 

Girl 3 was the exception.  However, as we shall see, she had good EDP skills but 

lacked structural knowledge and general executive functions process skills that caused 

problems building the complex amusement park ride build she chose but did not cause 

problems in the much simpler warm up task.  In general, many students used a combined 
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set of materials where no single piece spanned the walls with the parts given.  Many 

students build somewhat haphazardly using trial and error and ignored the flatness 

constraint.  

 

Figure 31.  Girl 9 warm up task roof, which did not attend to the flatness constraint.   

The more advanced designs used intermediate walls.   



 

 128 

 

Figure 32.  Girl 8 solution with intermediate wall design.   

Girl 5 even built a removable roof. 
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Figure 33.  Girl 5 removable roof.  Note that it was flat on the top side. 

Some designs met the constraints better than others and also attended to design 

principles such as symmetry, stability, and scale. Instances of scale were seen when 

students built up walls first in order to leave room for mini-figures.  At least two second 

graders clearly expressed that that was why they built up the walls first (which later 

limited the available parts).    This is related to the creative play (designerly play) aspect 

of the mini-figures, which was seen more in second graders.  Now that the warm up task 

results have been briefly described, the main task results will be shown next.  

Finished Model Design Data Results  

This section describes the finished model design data results of each student’s 

warm and main task.  With the exception of a rating of each student’s EDP, originality, 
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and model functionality, this data consists of various attributes of each model and more 

ratings based on a warm up rubric and ride rubric (see Appendix D - Warm Up Task 

Rubric  and Appendix E - Finished Model Design Quality Rubric).   

This data was first examined by gender and grade level. 

 

 

Figure 34.  Finished model design data by grade level. 

There are 2 different scales used in this diagram.  Self-efficacy is a 1 to 5 point 

scale.  The various rubric-based ratings (WU Time Rating, WU Functionality, WU 

Process, and WU Rating, Creativity, Function, Process, and Rating) are on a 1 to 4 point 

scale.  WU refers to warm up task and the other ratings are for the main task; the 

Creativity, Function, Process, and Rating refer to the main task.  WU rating and Rating 

are the mean of the three aspects of each rating.  Stable, Symmetrical, Scale, Computer, 
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Crafts, Direct (coupling), Gears, Pulleys, Motor, Sensor, Planning, and LEGO 

Experience are on a binary scale but may show as decimal numbers since they consist of 

the mean values.  All of these were judged as present (1) or not present (0).   

We can see that, with a few exceptions, there are not significant differences 

between the grade 2 and grade 6 values.  Grade 6 students completed their warm up task 

more quickly than grade 2 students.  The number of computer program steps was higher 

for grade 2 students, but because the number of steps were so few overall, this number is 

not meaningful.  Grade 6, but not grade 2 students, showed attention to symmetry in their 

designs.  Only grade 6 students used gears.  Only grade 2 students (n=2) produced 

planning artifacts either before build or post-make.  Self-efficacy was slightly higher in 

grade 2 students but not necessarily accurate when the overall ratings were examined.  

These results were surprising; greater differences were expected between grade 2 and 

grade 6 students.   

Even fewer differences were seen for gender.  See Figure 35.   
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Figure 35.  Final model design data by gender. 

As for grade level, the number of steps was not meaningful.  LEGO experience 

was greater for the male students.  Overall, these results are encouraging and show, at 

least in this small sample, the gender does not play a role in the final products of male 

and female students in the context of a yearly K-6 robotics program.  It is certainly 

plausible that the existence of the program helps to ameliorate cultural pressures for girls 

not to be good at mathematics, science, and engineering.   

The final model design ratings were compared by gender and by grade level and 

no correlation was found.  Similarly, the EDP graphs were grouped together by gender 

and by grade level and were visually inspected for patterns and, again, no pattern was 

found.  (See Figure 34 and Figure 35.) However, there were significant differences in the 

builds (as measured by the final model design ratings and EDP timelines).  If neither 

gender nor grade level was the primary factor in the differences in final models and EDP, 
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what was?  In observing the students, there seemed to be some differences in their 

knowledge of LEGO connecting techniques and their engineering process that was 

affecting their ability to realize design ideas.  I looked at the final model design data by 

the new LEGO experience variable and by the EDP rating to see if more significant 

differences would be shown to verify my emerging thesis that factors other than gender 

and grade level were playing significant roles.  If so, more analysis would be needed to 

find out exactly what was going on.  

  

 
Figure 36.  Finished model design data by LEGO experience. 

 
In contrast to the grade level and gender graphs, there is an across the board increase 

in rating for those students with LEGO experience for both the warm up task and the 

main task.  Greater LEGO experience could point to greater structural and domain 

specific process knowledge as being significant factors in the differences in final products 

and engineering design processes.   
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Figure 37.  Finished model design data by engineering design process rating.  This graph 
shows students with the highest possible EDP rating (EPD+ in blue) versus students with 
lower ratings (EDP-) in red.    

As with LEGO experience, students with the higher engineering design process 

ratings (as judged by Appendix E - Finished Model Design Quality Rubric) showed 

similar gains.  This suggested that an in-depth analysis of the students’ engineering 

design processes could shed light on the factors that were influencing the students’ final 

designs.   

Individual Builds  

 In this section, I review the EDP Timeline and EDP phase frequency, time, and 

average duration graphs of each student.  A photograph of each final build will also be 

shown.   The basic story of each build is described as well as any interesting moments 

that occurred that had relevance to the research questions.  
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Boy 6.  Second grader and experienced LEGO builder Boy 6 had a somewhat 

complex ride and a sophisticated parallel program.  Creative play was very important to 

Boy 6 and he was very intent on making a “spooky ride.”  Boy 6 talked a lot about his 

interest in LEGOs. He added many creative details such as the ride operator shown in 

Figure 38. Boy 6 showed some good EDP skills such as testing regularly as he built and 

asking problem scoping questions.  Boy 6 generally built serially, that is, he created as he 

went along without expressing an overall plan for his ride.  He explicitly showed some 

good cognitive flexibility at 09:05.   

[00:09:05]	Boy	06:	Maybe	if	it	doesn't	work,	I'll	try	a	different	idea.		[IMPORTANT]	
(Shows	cognitive	flexibility)		

 

 
Figure 38.  Boy 6 finished ride. 
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Figure 39.  Boy 6 parallel program for his ride. 

 In terms of process, Boy 6 had a good mix of EDP phases with some up front 

planning and research and ongoing planning and testing. He had a long programming 

time but once completed, he did not need to come back to it.  Boy 6 showed a fairly 

typical EDP profile with perhaps a little less research and evaluation than others.    See 

Figure 40 and Figure 41 for visualizations of his EDP.  Note that the dark lines on the 

time itself in Figure 40 show where the subject was doing nothing, waiting for the 

researcher, etc.    
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Figure 40.  Boy 6 EDP timeline. 
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Figure 41.  Boy 6 EDP frequency, time, and duration graphs. 

Boy 7.  Second grader Boy 7 showed a similar final product and similar EDP 

process as Boy 7 but was a little less sophisticated in his EDP.  Boy 7 showed a mix of 

skills in predicted the effects of his design design decisions.  For example, he did not 

know that a LEGO cross pattern is needed for axle insertion to get a solid connection and 

hence needed to hand start his ride when there was a load on it, a problem he never 

corrected.   

[00:18:10]	Boy	7:	I	thought	it	would	be	too	heavy.		[IMPORTANT]	(Blames	free	spinning	of	beam	
attached	to	motor	on	weight	rather	than	connector	choice,	which	is	true	in	a	
way	but	not	the	root	cause	of	the	issue.)		

	
As	discussed later, there is a question in this type of case as to whether this shows 

difficulty in causal reasoning, lack of structural knowledge, or a combination of both. 
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This also shows that children, at times, have no issues with filling in problems with a 

“hack” that adults might find objectionable.  This could be considered to be an example 

of a lack of cognitive flexibility, which I also call non-optimal persistence, since he never 

corrected the root cause of the problem.   Note also his simple program never ends, which 

violates the safety constraint.  Overall, his build was borderline complex with many 

subsystems and creative ideas.  Examples of this are the lights he built, the ride operator, 

and the turntable the ride sits on.  See Figure 42 and Figure 43 for photographs of his ride 

and program.   

 

 
Figure 42.  Boy 7 final ride. 
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Figure 43.  Boy 7 final program.  Note that ride never ended. 

 Boy 7 showed a serial building style; he never indicated an overall plan for his 

ride but had a lot of build/evaluate cycles, which further shows a tinkering style (Resnick 

& Rosenbaum, 2013).   This is also shown in Figure 44 and Figure 45, which show that 

Boy 7 spent the vast majority of his time building with not much time planning or 

researching.  He did show some evidence of controlling variables (COV) when he takes 

the mini-figure off the beam when it does not spin.  Overall, Boy 7 showed a build heavy 

EDP but with some planning, research, and a fair amount of evaluation.    
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Figure 44.  Boy 7 EDP timeline. 
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Figure 45.  Boy 7 EDP count, frequency, and average duration graphs. 

Boy 8.  Second grader Boy 8, our last grade 2 boy to discuss, was an interesting 

and atypical case.  Boy 8 showed a real mix of high and low skills and knowledge. His 

ride was also quite interesting and reflected his mix of knowledge and skills.  He attached 

the motor to his ride seat (rather than a tower structure), which resulted in the cord being 

tangled up when the ride actually ran.  See Figure 46 for a photograph of his ride.  Like 

Boy 7, he did not initially attach the axle to a cross piece.  Because that was critical to his 

ride, I did eventually provide some scaffolding so his work could continue.   Boy 7 had a 

simple 3-step program as shown in Figure 47.  Even more interesting than his fairly 

complex, atypical ride was his engineering design process.   



 

 143 

 
Figure 46.  Boy 8 final ride.  Note motor on seat and tangled cord.   
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Figure 47.  Boy 8 program. 
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Figure 48.  Boy 8 initial ride plan. 

Boy 8 was one the few students to use produce a plan ahead of time as shown in 

Figure 48.  He continued to use drawing as a way to plan. His relevant executive function 

in the form of causal reasoning was less developed than other grade 2 students.  One 

example of this was that he did not see that attaching the motor to his seat rather than the 

structure would cause the cord to become tangled.  However, he did show cognitive 

flexibility, which helped with lack of causal reasoning and structural knowledge.  Here is 

an example of his cognitive flexibility, which he also can articulate. 

[00:10:28]	Boy	8:	Maybe	I	should	make	the	roof	lighter,	because	it	keeps	falling	down	
because	I'm	making	that	wall.	[PERSISTENCE+]	(Decides	to	take	
difference	approach	in	light	of	persistent	difficulty)	[IMPORTANT]		
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An example of his lack of structural knowledge was his confusion about the 

purpose of motors.  While he did not use design principles of stability, symmetry, and 

scale, he did have good engineering design process knowledge, he applied mathematics 

to help his design, and he planned ahead with an overall system design.  He also attended 

to the design constraints.  Because of his strengths of cognitive flexibility and a good 

EDP, he was able to largely overcome his lack of structural knowledge and causal 

reasoning given sufficient time.  An example of this is when he eventually figures out, 

with sufficient testing, that the axle must be solidly attached to the wall in order for the 

seat to spin.   

[00:36:19]	Boy	8:		Wait,	I	don't	think	I	actually	make	something	to	move.	I	just	need	
something	to	stick	it	into,	because	then	you'd	still	be	stopping	it	and	
then…	[IMPORTANT]	(Learning	moment)		

 
 
 Examining the EDP Timeline, as shown in Figure 49, we see a more advanced 

EDP with significant up front planning and research.  However, his overall time is longer 

than other grade 2 students because his lack of causal reasoning and structural knowledge 

caused more time to be needed to work out design problems. Figure 50 confirms a good 

mix of planning, research, building, and evaluation in the % EDP Phase Time graph.  

Now that the grade 2 boys have been examined, let’s look at the products and processes 

of the grade 2 girls.    
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Figure 49.  Boy 8 EDP timeline. 
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Figure 50.  Boy 8 EDP phase frequency, time, and average durations. 

 
 

Girl 6.  Second grade Girl 6, like Boy 8, made drawings of her design, but they 

were post-make drawings.  She pointed to the prototype and then the drawn parts so she 

had a 1-to-1 correspondence with drawing and model.  Girl 6 made a simple LEGO ride 

that did not use a motor or a computer.  See Figure 51 for a photograph of her finished 

ride.  Note the green and yellow stairs on the side of the ride.  The ride had a small 

number of parts but did rotate manually with a long ride beam rotating on an axle.  Figure 

52 shows her accurate post make drawing.  Now that a short description of her fairly 

simple ride has been given, let’s examine her engineering design process.  
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Figure 51.  Girl 6 finished ride.   
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Figure 52.  Girl 6 post make drawing. 
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 In terms of her process, we see from Figure 53 that Girl 6 jumped right into 

building.  She initially asked about using drawing as a plan, but when I told her it was her 

choice, she skipped the drawing and jumped right into building. Girl 6 had low causal 

reasoning and structural knowledge.  For example, she repeatedly tried to attach a long 

beam to another long beam at at 90-degree angle using a single connection point.  Again, 

since these seem to go hand-in-hand, there is some question as how much is lack of 

structural knowledge, how much is causal reasoning, or how much is a combination of 

both. Girl 6 also showed evidence of low cognitive flexibility (non-optimal persistence) 

in terms of persisting with unstable design ideas.  However, she did change her larger 

ideas of about what her ride could be. An example of this is shown below. 

[00:06:09]	[PLAN]	Girl	06:	Even	though	I	was	going	to	try	to	make	it	go	up	like	this	and	
then	go	down,	or	there	was	this	ride	where	it	was	a	dragon	ride.	
It	went	side	to	side,	and	then	it	started	to	go	up,	up,	and	then	it	
started	to	go	higher	and	higher,	so	I	might	make	the	dragon	ride	
too.	[IMPORTANT]	

 

During the coding process of Girl 6, I started to wonder if the complexity of the 

designs such as this one might be affecting the corresponding engineering design process.  

Her simple design was build heavy and she chose not to explicitly plan the ride on paper.   
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Figure 53.  Girl 6 EDP timeline. 

 As shown in Figure 54, Girl 6 spends a large proportion of her time building, 

which supports the previous contention that her EDP process was not advanced.  She 
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spent very little time researching but did do some amount of planning.  Now, let’s see 

how Girl 6 compares to the other second grade girls, Girl 8 and Girl 9.  Recall that Girl 7 

was not used since she did not verbalize sufficiently.   

 

 
Figure 54.  Girl 6 EDP frequency, time, and average duration graphs. 

 
 
 

Girl 8.  Girl 8 is a very interesting and atypical case.  She had advanced 

engineering and executive function skills, which she demonstrated in both the warm up 

task and the main task.  However, she chose a low complexity design, as shown in Figure 

55, which resulted in a very unique EDP timeline.  Girl 8 chose to make a roller coaster, 

which she planned very precisely ahead of time (see Figure 56).   The ride did not use a 

motor or computer.   
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Figure 55.  Girl 8 final ride. 
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Figure 56.  Girl 8 ride plan. 

 

 Girl 8 had a very interesting engineering design process (see Figure 57).  She 

completely planned out her ride ahead of time and needed very little iteration.  She 

spontaneously planned without teacher prompting.  In other words, her ride worked as 

planned without the need for very much rework.  She did no research and needed very 

little evaluation (testing) of her ride as shown in Figure 58.  Note also that she did not 

need much time to complete her ride.  She did use some simple math in the form of 

counting to help execute her plan.  She seemed to be idea first, systems (as opposed to 

serial) builder.  In other words, as her drawing shows, she planned out her complete ride 

ahead of time.  Girl 8 showed through her verbalizations that she drew on previous 

experience.  An example is shown below.   
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[00:03:50]		Girl	8:	Yeah.	It's	going	to	be	this,	and	then	it's	going	to	keep	going	up.	Then	I	
have	to	have	one	of	these	so	it	can	stay,	like	a	board,	so	it	can	stay	
holding	down,	and	up.	I	have	to	keep	adding	...	I	can't	remember	if	I	did	
this	this	year	with	the	cars	or	something,	but	me	and	Jackson	we	kept	
taking	little	ones	and	piling	them	on	top	of	each	other.	[IMPORTANT]		

	
As she drew, she was clearly visualizing the building process, which indicates 

good structural knowledge and good causal reasoning in the form of prediction.   

[00:04:31]	{drawing}	

{00:04:40]	Girl	8:	Make	it	stay	holding.	

[00:04:50]	Girl	8:	Now	I'm	adding	a	flat	part.	

Researcher:	 Yup.	

[00:04:54]	Girl	8:	It	needs	to	be	these.	This	one's	going	to	be	a	little	thicker	so	it	can	hold	
up	better.			[IMPORTANT]		

 

I wondered if the combination of low complexity and high skills and structural 

knowledge resulted in such a unique EDP, similar to early, theoretical, idealized EDP 

models as described by Welch (1999).  Girl 9, on the other hand, seemed to be 

somewhere between Girl 6 and Girl 9 in terms of build complexity and process.   
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Figure 57.  Girl 8 EDP timeline. 
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Figure 58.  Girl 8 EDP frequency, time, and average duration graphs.   

Girl 9.  Girl 9 was very creative in her ride.  She readily “filled in” mentally the 

parts of her ride she could not actually make.  As shown in Figure 59, the motor does not 

actually turn anything.  Also note in her program (see Figure 60), the Wait For Motion 

Sensor block is not functional, though the program still runs.  She did have many 

imaginative details such as the “grass” she made for her ride.  
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Figure 59.  Girl 9 finished ride. 
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Figure 60.  Girl 9 ride program. 

 In terms of her process, she lacked structural knowledge.  A few (of many) 

examples of this were:  she did not have good knowledge of how LEGO pieces connect 

and she was unclear on the difference between the motor and USB hub.  She also had 

some misunderstandings about her program.  She did use mathematics when she 

measured the string before cutting it.  She was very much a serial builder who did not 

have an overall plan for her design up front.   She did consistently describe her next step.   

Because she had generally good cognitive flexibility, causal reasoning, and engineering 

design process knowledge, she happily finished her ride leaving some - what adults might 

consider incomplete - parts of her ride to her imagination.  Here are some of her 

comments on this.  



 

 161 

[00:25:18]	{no_activity}	[2:PLAN]	Girl	09:	I	might	want	to	make	it	so	this	looks	kind	of	
connected.	I'm	going	to	grab	another	piece	and	try	to	connect	them…	

[00:26:22]	[2:PLAN]	Girl	09:	I	couldn't	find	a	long	enough	piece	so	now	I'm	just	going	to	
add	more	grass.		

In the post interview, she describes her ride and process this way.   

Girl	09:	 Sure.	The	motor	helps	this	turn,	the	handle	turn.	The	seat	you	can	
move.	I	had	to	move	it	because	it	needed	enough	space.	It	doesn't	latch	
on	because	I	couldn’t	find	a	piece	to	latch	it	on.	This	rope,	I	put	the	little	
pieces	on	it	for	it	to	stay	until	I	put	on	the	tape.		

	
 Her use of tape with LEGOs also shows cognitive flexibility but also a lack of 

structural knowledge.  Adults and experienced LEGO builders might find the use of tape 

objectionable to their own design sensibilities.   

Figure 61 and Figure 62 show that she builds without much initial planning but 

plans as she goes, suggesting a serial or tinkering style (Resnick & Rosenbaum, 2013).  

She did do some research and testing as she built.   Unlike other students who seemed to 

lack both casual reasoning and structural knowledge, she had good casual reasoning skills 

but clearly lacked structural knowledge.  However, her causal reasoning skills helped her 

gain structural knowledge during the build.  Now that the second grade builds have been 

discussed, the sixth graders will be examined next.   
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Figure 61.  Girl 9 EDP timeline. 
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Figure 62.  Girl 9 EDP frequency, time, and average duration graphs. 

 

Boy 3.  Boy 3 initially built a roller coaster completely out of blocks.  I decided 

that I should have required LEGO blocks to be used and I asked him to try again. 

Somewhat surprisingly as shown in Figure 63, he chose to build the same ride idea - a 

roller coaster - using wooden blocks and LEGOs.  Most of the LEGO pieces were not 

even connected and, furthermore, not even lined up (see Figure 64).  This again shows 

the children will readily “fill in” what adults or experienced LEGO builders might find 

objectionable in terms of LEGO design sensibilities.  
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Figure 63.  Boy 3 finished ride. 



 

 165 

 
Figure 64.  Boy 3 ride section. 

 Boy 3 chose a low complexity build and his process reflected that.  He did not 

need very much testing or research as shown in Figure 65 and Figure 66.  After some 

initial planning, Boy 3 built his roller coaster and did some planning as he went using a 

serial building style.  He did not show application of mathematics or science or much 

structural knowledge.  It is somewhat unclear how much this is a function of his low 

complexity build choice.  He did show some evidence of cognitive flexibility by 

essentially using LEGO pieces as blocks in such a unique way.  He also showed some 

causal reasoning skills when the secondary EDP codes were examined.  The short build 

time and overall EDP seem to indicate low complexity and low overall structural 

knowledge and process skills.  Next we look at Boy 4 also chose a roller coaster design, 

but with significant differences in final product and process.   
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Figure 65.  Boy 3 EDP timeline. 
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Figure 66.  Boy 3 EDP frequency, time, and average duration graphs. 

 
 

Boy 4.  Boy 4, like Boy 3, built a non-motorized roller coaster.  However, as can 

be seen in Figure 67, his design is much more sophisticated - in terms of his use of LEGO 

connection techniques - than Boy 3’s.  See Figure 68 for a sampling of some of his 

LEGO connection techniques.  We can see that structural knowledge, in the form of 

LEGO connection techniques, seems to be emerging as an important factor in elementary 

engineering of LEGO and LEGO robotics.  Note also that his design is also symmetrical 

and much more stable that Boy 3’s roller coaster.   

Let’s look at Boy 4’s engineering design process now, especially compared to 

Boy 3 since they made the same ride idea and are the same age but choose very different 
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levels of complexity and exhibited much different structural knowledge of LEGO 

connection techniques.   

 

 
Figure 67.  Boy 4 final ride. 
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Figure 68.  Close up of Boy 4 LEGO connection techniques. 

 Figure 69 and Figure 70 show much more typical engineering design process than 

Boy 3.  This is seen with the greater amount of time and a more even distribution of EDP 

phases, most notably evaluation and research.  His build time was also longer and more 

typical of medium complexity builds.   

Boy 4 articulated a parts first orientation at one point in his design.  

[00:26:51]	Boy	04:	I'm	just	looking	for	parts	to	see	if	they	give	me	any	inspiration	for	
something	new.	[IMPORTANT]			
 
However, he seemed to have an overall plan in mind at the start of his process.   

He could not precisely articulate why he builds symmetrically at 11:02 but he did 

consistently build symmetrically.  He also was able to articulate concerns about stability 

explicitly, in both cases, showing use of engineering design principles.   
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[00:11:02]	[2:EVALUATE-VERBAL]	Boy	04:	So	it's	not	like	...	if	there	is	like	a	car	going	on	
it,	it	could	turn	one	way	instead	of	the	other,	but	I	wanted	it	to	be	one	
way.	It	just	works	better,	I	think.		[SYMMETRY+]		

[00:27:45]	[BUILD-NORMAL]	[2:PLAN]	Boy	04:	I'll	just	put	this	on	this	one	too,	so	it's	a	
little	more	stable.	[STABILITY+]		

 
 

At 21:48, does some disassembly to enable some reassembly, which shows 

cognitive flexibility.  He also uses an impromptu wheel as a cart when asked to 

demonstrate ride at the end showing both cognitive flexibility and the ability to “fill in” 

missing parts of a design with his imagination.    

In summary, Boy 4 has good LEGO structural knowledge and generally higher 

process and executive function skills than Boy 3.  Just listening to the way he talked 

shows a higher level of sophistication that Boy 3.  Here is an example.   

[00:10:26]	[BUILD-REBUILD]	[2:PLAN]	Boy	04:	I	have	to	put	the	axle	piece	so	I	can	fit	it	

with	other	piece.		

I felt that Boy 4 could definitely have been pushed to do more - as I would have 

had he been in the classroom setting.  His higher structural knowledge, process skills, and 

somewhat more complex build seemed to result in a richer, more balanced EDP.  In 

contrast to Boy 3 and Boy 4, the other sixth grade boy, Boy 5, chose a complex build and 

had the structural knowledge and process skills available to accomplish his design idea.   
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Figure 69.  Boy 4 EDP timeline. 
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Figure 70.  Boy 4 EDP frequency, time, and average duration counts. 

 

Boy 5.  Boy 5, in contrast to Boy 3, chose a complex build and he also possessed 

the knowledge and tools accomplish his design idea (see Figure 71).  His ride is an 

example of advanced ride structure that was also seen in the pilot study sixth grader and 

with Girl 5, as we shall see.  These designs all consisted of four subsystems - which were 

built in order - of base, tower, rotating arms, and seats - with an overall system plan in 

mind. Note that not all the seats were built by Boy 5, as suggested by the researcher, in 

the interest of time.   Boy 5 and Girl 5 planned ahead having a complete idea of the whole 

system in their mind before starting.  In contrast, Girl 3, a serial builder, started with 

seats, and was never able to subsequently connect the seats to a larger structure.  Boy 5’s 

ride, when running, features seats that push out due to angular momentum, just like in a 



 

 173 

real swing ride.  Boy 5 used a simple one block motor block to program his ride.  We 

have seen that Boy 5 was able to build a complex ride.  How did his EDP reflect that?   

 

 
Figure 71.  Boy 5 finished ride. 

 As shown in Figure 72, the EDP timeline of Boy 5 shows a long, dense, and 

balanced EDP.  Also note the significant planning and research cycles that occurred 

before building commenced, which shows a good knowledge of the engineering design 

process and also a plan ahead or system style.  Evaluation also occurred throughout the 

engineering design process.  Figure 73 shows his EDP phase frequencies, time spent, and 

average duration graphs.  The % EDP Phase Time graph, which seems to be the most 

useful for analysis through this study, shows a stair-like pattern (with evaluation going 

back down) that is typical of students with advanced EDP.  In other words, planning, 
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research, and building go up in a fairly linear fashion with the total evaluation time nearly 

the same as the planning time.  Time spent programming was found not to be significant 

in this study and Boy 5 is typical of this.   

 
Figure 72.  Boy 5 EDP timeline. 
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Figure 73.  Boy 5 EDP frequency, time, and average duration graphs. 

Boy 5 showed evidence of strong, across the board, structural knowledge, domain 

specific, and relevant executive function skills.  Boy 5 considered using wheels and 

tracks to built a roller coaster, but ended up not using it.  This showed good cognitive 

flexibility and good causal reasoning, since he considered many ideas and then picked 

one based on either mental projection or by physically trying out ideas.  Contrast this 

with Boy 3 and Boy 4, who persisted with their roller coaster designs.  He consistently 

used prediction and inference in his design processes.   As one example, he moved the 

motor (in advance mentally) on the top of the tower so it was centered enough that the 

swings would not hit the sides of the tower showing very good prediction  (causal 

reasoning).   He also had many correct inferences and projections in his system testing.  

Recall that prediction and inference are key causal reasoning skills for engineers.   
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Boy 5 consistently talked about and incorporated the design principles of stability 

and symmetry.  He gave accurate projections of what would be stable.  Here is an 

example of his use of symmetry and stability.  He also provides a description of how they 

are related (the latter is example of structural knowledge since he knows how different 

concepts are connected).   

Researcher:	I	notice	you're	keeping	your	design	so	that	it's	usually	the	same	thing	on	the	
other	side,	all	the	time.	

[00:17:32]	{gesturing}	[EVALUATE-VERBAL]	Boy	05:	Yeah,	so	it's	not	off	balance.	If	it's	off	
balance,	it	has	more	likely	to	tip	over.		[PROJECTION+]	
[IMPORTANT][SYMMETRY+]	[STABILITY+]		

	
In the post interview, he mentioned that is was sturdy so it was safe, which 

showed that he attended to the engineering constraints, a sign of a strong knowledge of 

EDP.    

Boy	05:	It's	for	people	who	really	like	getting	dizzy	and	it's	really	sturdy	so	it's	

really	safe. 

Another example of his strong EDP is his use of mathematics in the form of 

frequent measuring.   He can also articulate why he is using mathematics.   

[00:09:55]	{moving}	[EVALUATE-PHYSICAL]	Boy	05:		I'm	now	trying	to	see	[by	measuring]		
if	they're	lined	up	properly.		

		
Boy 5 showed an advanced knowledge of LEGO connection techniques.  He was 

also able to figure out connection problems if he encountered a new connection problem.  

He could also articulate his structural knowledge of LEGO connection techniques.   



 

 177 

[00:16:26]	[2:EVALUATE-VERBAL]	Boy	05:	That's	when	these	pieces	come	in	useful	if	you	want	to	
connect	three	things.		These	only	connect	with	two.		[IMPORTANT]	
[CONNECTOR-META+]		

 

Another example of strong structural knowledge is his use of three connector pegs 

to attach two beams to each other.  

Researcher:	 Why'd	you	use	three	[connector	pegs]?	

[00:31:05]	[2:END]	Boy	05:	So	it's	more	sturdy.	[CONNECTOR-META+]	[PROJECTION+]	
[IMPORTANT]		

 

Boy 5 spends a good deal of time exploring how to attach beams to other beams 

in a rectangle so they don’t move, that is, they stay at 90 degrees.  He persisted and tried 

many different techniques and eventually shored up the tower by using multiple 

horizontal beams. Some scaffolding on the use of trusses would have been useful in the 

classroom setting.  

He shows persistence and curiosity about solving problems.  He expressed in the 

post interview that he liked building more than programing.   

Researcher:	 Really	good?	Okay.	What	do	you	like	better,	the	programming	or	the	
building	part?	

Boy	05:	 Building.	

Researcher:	 Okay,	why?	

Boy	05:	 It's	fun	to	find	different	ways	you	can	build	things	and	how	you	can	use	
different	parts	in	different	ways.	

 

Boy 5 always seems to have a clear idea of where he is going even if the problem 

is not solved yet.   
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Researcher:	 What's	your	next	part?	What	are	you	thinking	you're	going	to	do	next?	

	
[00:11:36]	{moving}		Boy	05:	Maybe	make	this	from	not	moving.	I	just	don't	know	how	
yet.	
 
At several points, he clearly pauses physical activity to plan, which was generally 

seen as and indicator of planning.  Another sign of advanced EDP is when he reveals that 

has been looking at the time on the audio recorder and keeping track of time so he could 

finish his build within the allotted time frame, something I was not aware of until he 

mentioned it.   

When he had attached the motor, he first wanted to know which way the motor 

would turn, but stated he would try one way first, which is a good troubleshooting 

strategy, an example of the causal reasoning skill of inference.    He clearly had a strategy 

of trying things out first as research.  

[00:59:12]	Boy	05:	I'm	just	trying	out	how	to	make	the	actual	seat. 

Overall, we see that the many tools Boy 5 brings to the task allows him to 

successfully build his complex design idea using a rich, balanced, and lengthy design 

process.  As we will see next, this contrasts with Girl 3, who has a similar design idea but 

does not have the tools needed to accomplish her design idea.   

Girl 3.  Girl 3 was the only student who did not finish her design.  After a long 

work period, I asked her if it was all right if she did not finish and she agreed.   I could 

see that she would either need extensive time or help to finish her design idea and that 

continuing would result in frustration.   Her partially completed ride is show in Figure 74.  

In contrast to Boy 5, Girl 4, and Girl 5, who had the similar ride idea of making a swing 

or Ferris Wheel ride, Girl 3 started with the seats and build serially without showing 
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evidence of planning ahead a complete system.  She states this clearly. 

Researcher:	 When	you	are	thinking	about	your	Ferris	wheel	do	you	plan	just	the	first	part	
and	then	worry	about	the	rest	later	or	do	you	have	an	idea	in	your	head	about	
what	the	whole	thing	is	going	to	be?	

[00:04:36]	Girl	03:	I	usually	just	start	with	one	thing	and	see	how	it	goes.		[IMPORTANT]	[PARTS-
FIRST]		

 

And also here. 

[00:53:48]	Girl	03:	I	just	try	to	look	at	the	parts	and	try	to	think	of	how	it'll	work.	
[IMPORTANT]	[PARTS-FIRST]		

 

The other builders, who showed evidence of complete system plan, started with a 

tower structure, then build a rotating structure to hold the seats, and built the seats last.  

Girl 3, building the seats first, could never find a way to connect the seats to a rotating 

seat holding structure.  What differences in her processes and knowledge might explain 

some of these results?   
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Figure 74.  Girl 3 partially completed ride. 
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 Girl 3 had low structural knowledge of LEGO connection techniques, which put 

her at a real disadvantage in trying to realize her complex build idea.  Examples of this 

are shown in Figure 74 and Figure 75.   The technique of using the thin yellow collars 

and axles is a common sixth grade technique but does not result in high stability designs.  

At one point, her seats spun but she did not see that it would not turn because it was 

circle-circle connection rather than a cross-axle connection.   She spent lots of time 

looking for and trying different way of connecting things.	She	seemed to miss easier and 

more direct and more stable ways of connecting parts. As shown in Figure 74, she has 

difficulty in figuring out how to change the direction of her subassemblies in a stable 

way.  While she has a good EDP, her less developed executive function skills of planning 

ahead, causal reasoning, and cognitive flexibility put her at a disadvantage.  She also did 

not apply mathematics or science knowledge nor did she show evidence of using the 

design principles of symmetry, stability, or scale.  
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Figure 75.  Girl 3 example LEGO connections. 

 While her EDP timeline looks fairly typical as show in Figure 76, a closer look 

reveals that she got struck in a research/built/evaluate cycle that never resolved.  This is 

evident in the research heavy second half of her build.  A symmetrical design would have 

helped a lot with the beams.  One seat kept falling apart, which shows evidence of a lack 

of cognitive flexibility or non-optimal persistence.    

She does show some EDP strengths.  For example, she got out all the pieces 

ahead of time to make second seat.   

Researcher:	 It	looks	like	you're	getting	a	bunch	of	pieces	ahead	of	time?	

[00:17:21]	{connecting}	Girl	03:	Yes.	

Researcher:	 Why	is	that?	
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[00:17:23]	Girl	03:	I'm	going	to	make	sure	that	there's	actually	enough	of	the	pieces	to	
see	if	I	can	build	this.	[IMPORTANT]	[PROJECTION+]		

 

Also, she does do a lot of physically trying out ideas without actually connecting 

anything, which shows a good research strategy.   

Girl 3 does not do as much evaluation as other subjects.  This may result in some 

of her difficulties.  Also, she does much less “cycling” than Girl 5, for example.  

At 39 minutes into her design, I saw a real flimsy connection system that was obvious to 

me could never work.   This shows a lack of causal reasoning and/or structural 

knowledge. She does eventually come to realize that structure to hold the seats up is 

needed and continues to articulate that need.   

[00:41:45]	[2:PLAN]	Girl	03:	Keeping	this	up	somehow.	[IMPORTANT]	(She	identifies	the	need	for	
a	base	and	tower	after	she	has	made	the	seat	structure,	unlike	Boy	5	and	Girl	5.)	
[IMPORTANT]		

[01:04:52]	{no_activity}	[PLAN]	Girl	03:	No,	I'm	just	trying	to	think	of	how	to	get	it	to	be	up.	

[01:08:19]	[2:PLAN]	Girl	03:		I	want	to	build	something	to	keep	it	up.	Like	a	little	structure	or	
something.	[IMPORTANT]		

[01:11:47]	[2:PLAN]	Girl	03:	I	just	thought	of	it.	I	was	thinking	of	like	how,	as	a	real	Ferris	wheel,	
how	it	stays	up.	[IMPORTANT]		

	
 Overall, we see a good engineering design process.  However, without sufficient 

structural knowledge and executive function skills, she would need much scaffolding or a 

very long time to realize a complex design idea.  Her serial building style was a major 

impediment to building this particular design.  Girl 4 and Girl 5 were much more 

successful in building similar ideas, to different extents, as we shall see next.   
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Figure 76.  Girl 3 EDP timeline. 
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Figure 77.  Girl 3 EDP frequencies, time, and average duration graphs.  

 

Girl 4.  Girl 4 made a ride that was simple in some ways (the tower) but complex 

in other ways (the gears).  She used whatever materials worked in her tower such as 

blocks and wheels as shown in Figure 78.  Girl 4 initially built a very simple non-

motorized version of her ride with the three major subsystems of tower, rotating seat 

structure, and seats (see Figure 79).  When she decided to use a motor, she largely rebuilt 

her ride but retained the three subsystems.  Her planning seems to be mostly serial with a 

small plan-ahead window though she builds the base first but she also seems to have an 

idea about complete system.  She can be seen as a unique mix of serial and a plan-ahead, 

systems builder.   
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Once she built her gear assembly, she spent a good deal of time developing a 

tower of the correct height to support it.  So while she had an overall system in mind, she 

did not build the tower first like more advanced builders such as Boy 5 and Girl 5.  

Figure 80 shows this intermediate stage of her ride.  Since she was intermediate in her 

complexity, how did her process differ from more advanced builders such as Boy 5 and 

less advanced builders such as Girl 3?   
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Figure 78.  Girl 4 finished ride. 
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Figure 79.  Girl 4 initial ride. 
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Figure 80.  Girl 4 intermediate state of ride. 

 We can see from her EDP timeline (Figure 81) and % EDP Phase Time graph 

(Figure 82) that she had a relatively short build time.  She was also build heavy (as 

measured by time spent building) but did have some time planning and evaluating with 

very little research time.  While her structural knowledge of LEGO connection 

techniques was also low, her much more developed executive function in terms of 

cognitive flexibility and causal reasoning combined to allow her to come up with 

relatively simple, unsophisticated  but ultimately functional structures.   
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Figure 81.  Girl 4 EDP timeline. 
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Figure 82.  Girl 4 EDP frequency, time, and average duration graphs. 

 She showed evidence of non-optimal persistence in her frequently unstable tower 

but eventually finds a creative solution, which shows cognitive flexibility.  As another 

example of high cognitive flexibility, she also made her own mini-figures when there 

were no more mini-figure bodies.  As another example of cognitive flexibility, she mixed 

in wooden blocks to get the correct tower height.    Her mix of wooden blocks and LEGO 

did not bother her like it might an adult or more experienced LEGO builder.   

[00:29:35]	{connecting}	[2:PLAN]	Girl	04:	Maybe	a	block	can	help	it	stand	up.  

So overall she shows a mix of high and low cognitive flexibility.   

 Girl 4 figures out that that base needs to be more stable but did not see this ahead 

of time.  She is not clear on solution either, at least right away.  She does articulate a 

concern for stability.  In general, she has a mix of correct and incorrect projections and 
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inferences but shows overall strength in causal reasoning.  Her system testing resulted in 

stability failures that she eventually worked through.   

 Overall, we see that her relative strengths in cognitive flexibility, EDP, and causal 

reasoning allow her to successfully overcome her low structural knowledge, unlike Girl 

3, who did not possess enough compensating strengths.  How does this compare with Girl 

5 who built a complex system and had the highest structural knowledge and process skills 

in the research sample?  

Girl 5.  Girl 5 built a very sophisticated ride with base, tower, and seat structure 

as shown in Figure 83.   She used gears to increase the speed of one of the seats by using 

gearing up (see Figure 84).  She built up starting with the base, built an ascending, 

gradually widening tower with an internal column for strength, a platform to hold the 

motors, and two rotating beam based seats.  She used additional supports to hold the gear 

train as shown with the grey blocks and grey plate in Figure 84.  She wrote a a simple one 

block motor block program to run the ride but frequently varied the parameters in her 

system testing.  Girl 5 solved a number of interesting problems during the build and she 

had a very sophisticated process and good structural knowledge of LEGO connection 

techniques, one of which can be seen in Figure 85.  Let’s now examine in more detail her 

processes and knowledge that enabled her to realize her complex design idea.   
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Figure 83.  Girl 5 finished ride. 
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Figure 84.  Girl 5 detail of gear train used. 
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Figure 85.  Girl 5 LEGO connection example. 
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 An examination of her EDP time line shows a very long, dense, and balanced 

EDP.  The only difference from other advanced EDP builders is somewhat less time 

spent in research and more time in planning and evaluation.  She used frequent and short 

planning and evaluation phases.  Some of the density seen could be from her very 

expressive use of the talk aloud protocol.   Because Girl 5 was the strongest student 

overall, we will examine her strengths and processes in some detail below.   

 
 

 
Figure 86.  Girl 5 EDP timeline. 
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Figure 87.  Girl 5 EDP frequency, time, and average duration graphs. 

Structural knowledge.  Girl 5 showed many examples of having strong structural 

knowledge of LEGO connection techniques.  She clearly uses previous experience to 

help her connect pieces.  The two separate examples below show this.  

[00:21:28]	Girl	05:	How	am	I	going	to	attach	it	to	that?	I	feel	like	there	was	a	way.	I	

remember	that	I	can	attach	these	to	something,	and	attach	that	to	the	motor,	so	I've	got	

the	motor.	I'm	out	of	here,	and	put	it	right	about	there.	Now	I'm	going	to	detach	it	first.	

I'm	going	to	attach	it	with	some	of	these,	and	first	attach	itself	to	those.	[CONNECTOR-

META+]	[IMPORTANT]		

[00:25:13]	Girl	05:	I	know	there's	a	piece	like	that.	It	just	slipped	my	mind	what	piece	it	
is.	[IMPORTANT]	
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Here she demonstrates structural knowledge of LEGO connectors by articulating 

the functional requirements of a piece. 

[00:25:07]	[2:PLAN]	Girl	05:	Make	an	axle	from	this	go	this	way.	[CONNECTOR-
META+][PROJECTION+][IMPORTANT]		

Here she uses collars and explains their purpose showing important LEGO 

structural knowledge. 

[00:31:25]	{connecting}	[2:PLAN]	Girl	05:	Okay,	so	now	I'm	going	to	put	a	holder	on	this	so	this	
doesn't	hit	the	other	side	and	same	for	the	other	side.		[PROJECTION+]	
[CONNECTOR-META+][IMPORTANT]		

Unlike other students, she does predict that putting axle through a circle will NOT 

create strong connection from axle to seat assembly. Not only does she have good 

structural knowledge of LEGO connection, she also gained more structural knowledge as 

she built and tested.  The quote below describes something she learned.  	

	[00:43:27]	[2:PLAN]	[BUILD-REBUILD]	Girl	05:	I'm	going	to	take	this	off	and	replace	it	with	a	
different	one	with	two	long	so	I	can	attach	it	two	ways,	and	it'll	be	more	sturdy.	
Because	if	it's	one,	then	it	just	is	free	to	wobble.	[STABILITY+][CONNECTOR-
META+][IMPORTANT]		

	
As a final example of structural knowledge, Girl 5, like Boy 5, knows that using 

three connector pegs instead of two is more stable. 

[01:00:37]	Girl	05:	Okay,	so	I'm	going	to	attach	this	and	attach	this.	First	though	I	have	to	find	a	
better	side,	and	I'm	going	to	need	three	of	these	just	so	it's	extra	stable.	
[IMPORTANT]	[STABILITY+][CONNECTOR-META+]	(Describes	her	building,	not	
planning.)	

Engineering design process.  Girl 5 had a very strong engineering design process. 

For one, she observes carefully and tests as she goes along.  Here she spots a subtle 

problem and fixes it.   
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[00:07:24]	Girl	05:	(Lifts	structure)		Wait	a	second.		

Researcher:	 What	did	you	notice?	

[00:07:29]	[EVALUATE-VERBAL]	Girl	05:	It's	uneven.	

[00:08:59]	{moving}	[EVALUATE-VISUAL]	(Noting	that	she	does	a	lot	of	visual	
examination	of	model.)		

She is very adept at talking about one engineering design phase while doing 

another with her hands.  At one point, she searches for two different parts simultaneously, 

one with each hand.  These examples seem to point to an ability to engage is multiple 

processes at once.  She also had the only example of systemic testing I found.     

[00:37:24]	[2:PLAN]	Girl	05:	Like	an	experiment	with	different	speeds	to	see	which	one	is	
the	safest.	[ATTEND-CONSTRAINTS+]	[SYSTEMIC-TESTING+]	
[IMPORTANT]		

 
 

Girl 5, also uniquely in the study, uses a control of variables (COV) strategy.  She 

changes power and number of rotations when programming, but not simultaneously.   

As an aside, she seems to do more visual (rather than physical) evaluation 

compared to other students.  Another interesting and unique aspect of her process was the 

use of metaphor below.			

[00:05:25]	{moving}	[EVALUATE-VERBAL]	Girl	05:	This	is	getting	wider	like	an	upside-down	cake.	
[IMPORTANT][CREATIVE-PLAY]		

In summary, Girl 5 uses a variety of advanced engineering design processes.  She 

also attempts to use mathematics and science in her engineering design process, a basis 

for engineering, but not always successfully at first.  

Application of mathematics and science. There were a few cases where Girl 5 

tried to apply mathematics and science to her design process (in some advanced ways for 
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elementary school) but she had to do some additional work to do so effectively.  In the 

first example, she is trying to figure out which hole in a long beam is in the center of the 

beam so that axle can be inserted and the beam can rotate around the center.    She has the 

right idea to count the holes in a long beam but does not take into account the hole with 

the axle in it.   

[00:29:32]	[2:PLAN]	Girl	05:	Okay,	and	now	I'm	going	to	put	the	...	We're	going	to	find	out	how	
many	there	are.	One,	two,	three,	four,	five,	six,	seven,	eight,	nine,	10	...	15,	so	
don't	think	I	can	divide	that	in	two.	[IMPORTANT]	[MATH=]		

The correct answer is to put the axle in the eighth hole so that there would be 

seven on each side of the center hole. She figures it out by physically putting the axle in 

the middle and then counting.  Here’s her description of the process.   

[00:30:23]	Girl	05:	One,	two,	three,	four,	five,	six,	seven,	eight,	nine,	10,	11,	12,	13,	14,	15	holes.	
Can	I	divide	15	by	two?	No,	I	don't	think	so.	I'm	going	to	have	one,	two,	three,	
four,	five,	six,	seven,	one,	two,	three,	four,	five,	six,	seven.	Wait	a	second.	Huh!	
so	I	can	have	...	

Researcher:	 Why	did	you	say,	"Huh?"	

[00:30:55]	Girl	05:	{moving}	Because	I	was	thinking	that	I	couldn't	have	even	holes	on	each	side,	
and	now	I	can.	Yay!	

Researcher:	 Do	you	know	why	you	can?	

	[00:31:06]	Girl	05:	15.	Oh	yeah,	because	you	can't	divide	it	by	two.	If	you	could,	then	you	
wouldn't	be	able	to	have	even	amounts	on	both	sides.	Okay,	yay.	[IMPORTANT]	

She later can easily replicate her previous finding about the beam center showing 

that she has integrated this into new structural knowledge.    

[00:38:53]	{measuring}	[BUILD-NORMAL]	Girl	05:	So	one,	two,	three,	four,	five,	six,	seven,	so	
right	there,	right	there.	(Uses	counting	and	her	previous	determination	of	beam	
center.)[IMPORTANT]		
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	 A similar process occurs when she decides to use gearing up to make one seat of 

the ride go faster.  Although she correctly articulates that the smaller gear goes faster and 

why, she put the small gear on the motor, at least initially.  [The smaller gear needs to go 

on the seat, not the motor if the seat is to go faster.] With a little prompting, she figures 

out that the gears are backwards.  The prompting was that I pointed out that she said 

previously, that she has stated that the smaller gear goes faster. 

For the final example, as she does some system testing on the geared up and direct 

coupled seats, she does not understand initially why the geared up ride had 50 rotations 

when she programmed 10 rotations. I suggested she count the direct-coupled seat instead. 

This is another example where teacher scaffolding in the form of a neutral suggestion or 

question triggered learning.   

Use of design principles.  Girl 5 was very conscious of the design principles of 

stability and symmetry in her building.  She clearly articulates symmetry and why it is 

helpful.   

[00:16:51]	[2:EVALUATE-VERBAL]	Girl	05:	That's	a	good	question.	If	it's	symmetrical,	normally	I	
build	things	and	they're	symmetrical	on	both	sides.		[IMPORTANT]	
[SYMMETRY+]		

Researcher:	 Yeah,	that's	what	I	was	asking,	yeah.	Why	is	the	symmetry	good?	

[00:17:09]	Girl	05:	Because	normally	I	do	symmetrical	sides	and	they	tend	to	hold	up	better	than	
things	that	aren't	symmetrical.	[IMPORTANT]	[SYMMETRY+]	[PROJECTION+]	
[STABILITY+]		

She also expressed principles that help make structures stable as shown below. 

[00:17:21]	{searching}	[BUILD-NORMAL]	Girl	05:	Now	I'm	going	to	get	on	to	the	Ferris	wheel	
part,	and	I	think	I'm	going	to	make	it	not	a	really	long	Ferris	wheel	because	I	
don't	want	it	to	break.		[IMPORTANT]	[STABILITY+]	[PLAN-AHEAD+]		

	
She makes an interesting connection between symmetry and stability here.   
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[00:06:52]	{moving}	[EVALUATE-VERBAL]	Girl	05:	Because	I	don't	want	it	to	like	...	If	I	have	a	
heavier	side	on	one	side,	then	if	I	put	that	on	the	side	that	has	more	weight,	it'll	
tip	over.	I	don't	want	that	to	happen.	[STABILITY+][SYMMETRY+]	[IMPORTANT)	

She tells a story of how she learned about stability here.  

[00:11:26]	Girl	05:	I	guess	I	just	started	to	build	something	once	...	Yeah.	I	started	to	build	
something	once,	and	it	looked	really	cool,	and	then	all	of	a	sudden	it	just	
toppled	over.	I	got	really	upset,	so	I	tried	to	figure	out	a	way	to	not	make	it	fall	
over,	and	then	I	figured	out	that	I	need	to	make	more	sturdy.		[STABILITY+]		

These examples and her finished design clearly show an advanced integration of 

the design principles of stability and symmetry in her building.   

 
Cognitive flexibility.  Girl 5 showed multiple instances of cognitive flexibility in 

her thinking and she was also very persistent.  Here is an example where she both 

changes her idea, which shows cognitive flexibility and the ability to plan ahead.   

[00:26:07]	[PLAN]	Girl	05:	Oh,	I	know	what	I'm	going	to	do.	Instead	of	doing	this,	I'm	going	to	do	
the	same	ride,	but	I'm	going	to	make	two	Ferris	wheel	parts	and	have	one	on	
this	side,	one	on	this	side,	and	they're	just	going	to	be	two	long.	[PLAN-AHEAD+]	
[PERSISTENCE+]	[IMPORTANT]		

Here, she takes off the holding beam to strap the person on showing very flexible 

thinking and good building strategies.  That is, she temporarily undoes the strap in order 

to accomplish a goal and then puts it back.   

[00:37:49]	{connecting}	[BUILD-REBUILD]	[2:PLAN]	Girl	05:	Okay,	I	know	what	I'm	going	to	do.	
I'm	going	to	take	this	off	first,	strap	them	down	when	it's	not	on	the	thing	that	I	
can	break.	That	wouldn't	be	good.		(Really	good	strategy	for	building.)	
[IMPORTANT]	[PERSISTENCE+][PROJECTION+]		

 She shows a positive persistence even when she has to rebuild or change her idea.  

[00:52:36]	[2:PLAN]	Girl	05:	Hmm.	I'm	going	to	need	to	take	off	all	of	the	things	I	just	did	and	
move	this	further	over	to	there.	[PERSISTENCE+]	(Flexible,	starts	over).		

She also frames her attempts in a positive way even if they may not succeed right away.  	
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[00:55:51]	{connecting}	[2:PLAN]	Girl	05:	And	make	it	extra	stable	by	putting	another	four	piece	
down	here.	It'll	be	like	a	ring	around	it,	but	I'm	not	sure	if	it'll	work.	
[PROJECTION+]	[PRESISTENCE+]	[STABILITY+]	(Flexible,	try	it	attitude.)		

[00:58:06]	[2:PLAN]	Girl	05:	Yeah,	that	would	be	the	same	thing,	and	I'm	going	to	see	which	one	
would	work	better,	and	it'll	be	a	before	and	after.	[PERSISTENCE+]	(Flexible,	
positive	thinking)	

She calls things “interesting” when there are problems or when it gets hard, again 

showing positive persistence.   

[01:03:01]	[2:EVALUATE-VERBAL]	Girl	05:	This	just	got	interesting.	[PERSISTENCE+]	(Views	
problems	as	interesting	challenges).	[IMPORTANT]		

	
Plan-ahead. Girl 5 had an overall plan in her mind before building.  That plan 

consisted of three subassemblies:  base, tower, and seats.  Here is one example of her 

clear plan when she articulates that a base is needed first. 

[00:01:54]	[2:PLAN]	[BUILD-NORMAL]	{searching}	Girl	05:	Okay,	so	I'm	thinking	on	I'm	going	to	
build	something	different.	I'm	going	to	try	and	build	particularly	a	really	higher,	
slower	merry-go-round	that	has	the	chairs	instead	of	going	with	the	actual	
motor.	Like	spin,	so	the	person	is	always	up,	straight	up.	I'm	just	going	to	build	a	
base	right	now.		[IMPORTANT]	[PLAN-AHEAD]		

 
Causal reasoning.  Girl 5 shows strengths in causal reasoning especially when she 

predicted what would be stable.  Her causal reasoning is frequently related to design 

principles of symmetry or stability or based on structural knowledge of LEGO connection 

techniques.   

In the first example, she correctly predicts speed of motor with no gears based on 

her knowledge of gear ratios.   Note that before this, she successfully modified the gear 

train to gear up and not down.   

[01:13:53]	[2:PLAN]	Girl	05:	The	other	one's	going	to	be	like	turtle.	[PROJECTION+]		
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Here she correctly predicts how symmetrical building will produce a stable 

model.	

[00:28:06]	Girl	05:	Going	to	need	one	of	those	pieces	again.	Okay,	now	I'm	putting	the	other	
motor	on,	so	now	it's	balanced.		[IMPORTANT]	[SYMMETRY+][STABILITY+]	
[PROJECTION+]		

 
She also can make correct inferences about what caused problems after testing.  

Overall, her well-developed causal reasoning skills are successfully integrated with the 

other key process skills and are also integrated with her structural knowledge.  If she does 

make a mistake, her process skills allow her to discover it and update her structural 

knowledge.   

What Does It Mean?  

Now that all twelve cases have been examined in some detail, what does it all 

mean in terms of what was seen and what it means for helping students with open-ended 

engineering design problems?   

There was a lack of consistent EDP patterns by our original two independent 

variables of gender and grade level.  This indicates that a clear developmental sequence 

in the Piagetian sense was not detected.  Also, I did not see the  “Ideal Project Envelope”, 

a cascade pattern in EDP timelines as noted by Atman with expert practitioners (Atman et 

al., 2007; Atman, McDonnell, Campbell, Borgford-Parnell, & Turns, 2015).   
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Figure 88.  Ideal project envelope.  From “Using Design Process Timelines to Teach 
Design: Implementing Research Results” by C. J. Atman, J. McDonnell, R. C. Campbell, 
J. L. Borgford-Parnell, and J. Turns, 2015, Proceeding of the 122nd ASEE Annual 
Conference and Exposition, p. 26.1662.4.  Copyright American Society for Engineering 
Education, 2015.   

There did seem to be some correlation between the finished products with LEGO 

experience and EDP.  Also, the build choice and resulting complexity seemed to be a 

major factor in students’ EDP.   Other factors emerged, some predicted by pilot study, 

some predicted by previous research, and frameworks:  causal reasoning, design 

principles, cognitive flexibility, and structural knowledge.  In the discussion section, all 

these factors will be integrated into a model that predicts EDP based on the structural 

knowledge, domain specific process skills (design principles, EDP, application of 

mathematics and science) and what seem to be the most relevant executive function skills 

in this domain (planning, causal reasoning, and cognitive flexibility).  Additionally, more 

specific and specialized results and conclusions will also be reported.   
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CHAPTER 6  

 
FURTHER RESULTS AND DISCUSSION   

General Conclusions  

If both the students’ finished model design data and EDP timelines did not 

correlate with students’ grade levels or gender, what did they depend upon?  There did 

seem to be some correlation between the finished model design data with LEGO 

experience and the EDP rating (part of the finished model design data, see Appendix E - 

Finished Model Design Quality Rubric).  A careful analysis of the different EDP 

timelines started to reveal some patterns.  By sorting the EDP timelines in different ways, 

I eventually found a relationship between build complexity, the cognitive tools and 

knowledge the students brought to the task and the EDP timelines as show in Table 2.   

 

             Complexity 
Tools 

Low  Medium  High  

Low Boy 3, Girl 6   
           Boy 8  

Girl 3  

Medium                       Boy 4  Girl 4, Boy 7, Boy 
6, Girl 9 

 

High  Girl 8  Girl 5, Boy 5 

Table 2.  EDP timeline, build complexity, and tools.   

 We saw that Girl 8 had a very idealized EDP where she planned her design up 

front, built is as planned, and needed very little rebuilding and iteration. This makes sense 

since she had very high skills and knowledge and she choose a very simple design.  Girl 5 

and Boy 5 had very dense, balanced, and long EDP processes, which reflected the 

complex designs they chose to build and high skills and knowledge they brought to the 
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task.  Girl 3, on the other hand, had some low skills and structural knowledge but chose a 

very complex design that she could not finish.  Her EDP timeline was long and showed 

that she got stuck in a research loop never able to make progress towards a final product.    

Boy 3 and Girl 6 had build heavy designs, which makes sense since they had low 

complexity design ideas and low tools and hence could build without a lot of planning or 

research.   The other builders ended up in the middle and had typical, medium length, 

engineering design processes with a balanced mix of EDP phases.  So a relationship was 

identified between EDP timelines, complexity, and what students bring to the task 

(“tools”).  But what is meant by build complexity and tools?  A summary rubric was 

created to precisely describe and rate these factors for each student as shown in Table 1 - 

Summary Rubric in Chapter 4 - Methodology.  

 
The ratings for each student are shown below in Table 3.   
 

 
Table 3.  Summary ratings. *= mix of high and low ratings.  
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There was a strong relationship between the tools the students brought to the task 

and the final product rating.  This can be seen in Figure 89. 

 

Figure 89.  Tools versus ride rating by student. 

Tools Students Bring to Task and Build Complexity 

Recall that build complexity was defined in the summary rubric (see Table 1 - 

Summary Rubric) based on my years of experience seeing student rides, an examination 

of the twelve rides in this study, and also based on theoretical considerations.   In the 

context of design problems such as the amusement part ride task, the most relevant 

aspects of problem (or build) complexity are the structuredness of the problem (ill-

structured), the number of issues, functions, or variables in the problem (high), and the 

degree of connectivity between the variables (low) (Funke, 1991; Jonassen, 2000).  

Overall, students in this study are solving complex problems of various degrees, which I 
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classified as low, medium, or high according the summary rubric.  What emerged from 

the study were three different cases in terms of tools and complexity combinations:    

1) higher tools than complexity: some students build low complexity 

designs that could have done much more sophisticated designs (Girl 8),  

2) roughly matching tools and complexity:  some students built designs 

within their current capabilities (note that Boy 4 and Boy 8 were very 

close to this class),  

3) higher complexity than tools: at least one student (Girl 3) attempted to 

build without the needed knowledge and skills.  

Teachers need to check proposed designs to try and avoid the first and last cases. 

In the higher tools than complexity case, making more required components such as a 

motor, computer, and sensor required would have make the increased the complexity 

enough to make the task harder for students who have the requisite tools for the task.  

Ideally, the required use of these components would make sense and not seem arbitrary to 

the students.   

For the higher complexity than tools cases, teachers will need to provide 

significant, additional scaffolding to help these students realize their designs.  For Girl 3 

and Girl 9, additional scaffolding might have been:  having them sketch out the overall 

design first, having them build the tower first, additional LEGO connection scaffolding in 

terms of direct instruction or additional building experience focusing on connection.  In 

general, I do not recommend suggesting an easier design idea unless their idea is 

completely impractical.  That way, the student can feel empowered to realize their design 

ideas albeit with teacher help.   
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LEGO Knowledge 

Structural and domain specific knowledge about LEGO connection techniques 

emerged from the study as another key factor in the ability of students to realize their 

design ideas especially as the build complexity increased in some of the NXT (grade 6) 

designs.  While the correlation to final ride rating is not as strong as the overall tools 

rating, it is still a significant factor (see Figure 90).   Some students who had low 

structural knowledge compensated with other strengths (Boy 8 and Girl 9, for example).     

 

Figure 90.  Ride rating versus structural knowledge. 

Boy 5 and Girl 5, for example, had extensive LEGO connector knowledge - called 

domain knowledge - and but also possessed meta knowledge about how the various 

LEGO connection techniques were related to each other - called structural knowledge 

(Jonassen, 2000).  
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This study showed that some of the students needed more structural knowledge to 

be successful.  While the curriculum used in this study (Heffernan, 2013) identifies key 

WeDo connector parts (see Figure 91), additional work is needed to map connection 

techniques and specifically when to use them for both WeDo and NXT/EV3.  For 

example, many students in this study lacked the knowledge that to make an axle move a 

beam, a cross to cross connection is need as shown the bottom middle parts of Figure 91.  

Once connector pairings are mapped to their functions, activities need to be developed to 

help students understand which connectors might work - domain knowledge - and also 

gain structural knowledge of the relationship between the different connectors.   

 

 

Figure 91.  Key LEGO WeDo connection parts. 
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LEGO knowledge and build complexity emerged as two key factors that defined 

the EDP of elementary students doing an open-ended LEGO robotics task.  I found six 

other key factors that can be thought of as process skills:  three domain specific and three 

general executive function skills.   

Engineering Process Skills   

Three domain specific skills emerged as critical to the EDP and final product of 

students in this study.  They are: the application of mathematics and science to 

engineering, the application of the design principles of symmetry, scale, and stability, and 

finally, knowledge of and the ability to use the engineering design process.  

Design principles.  This study revealed that students with the best designs and 

design processes attended to and understood certain design principles:  stability, 

symmetry and to a lesser extant scale.  One way to see this is in Figure 92.  There is a 

high correlation between ride rating and the use of design principles.  One exception is 

Boy 6, who chose a low complexity build despite having some key strengths.   
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Figure 92.  Ride rating versus use of design principles. 

Examples were given in the Results section of students such as Boy 5, Girl 6, and 

Girl 8 who frequently cited and applied these design principles, while builders who had 

difficulty realizing their design ideas such as Girl 3, Boy 3, and Boy 8 did not.  This 

shows that learning activities should be created that teach these principles to students, 

especially symmetry and stability.  This includes the structural knowledge that 

symmetrical structures tend to be stable, the use of trusses such as those Boy 5 needed, 

and connecting beams in multiple places as shown by Girl 5 and Boy 5.   

Application of mathematics and science.  Similar to the use of design 

principles, some builders were able to apply mathematics and science to their designs 

successfully.  We can see that the correlation is not as strong as some others as shown in 

Figure 93.  This makes sense as not all rides at the elementary level require the 

application of mathematics or science to a significant degree.  However, it remains an 

integral aspect of engineering to teach to younger students (Brophy et al., 2008; 

Crismond, 2001). 
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Figure 93.  Ride rating versus application of math and science. 

Girl 5, the strongest builder in the study, did apply mathematics and science to her 

design but needed some teacher scaffolding, in the form of a neutral question to figure 

out the difference between gearing up and gearing down.  In her case, even though she 

could recite the domain specific science knowledge that the smaller gear goes faster, she 

initially applied it incorrectly.  

Jonassen (2000) explains this phenomenon this way:  However, that domain 
knowledge must be well integrated in order to support problem solving. The 
integratedness of domain knowledge is best described as structural knowledge. (p. 
69).   

I had to restate her own statement about gearing up before she could correctly 

apply science knowledge to her design.  This is consistent with other research that teacher 

or other scaffolding is needed to help students apply science in design problems 

(Crismond, 2001; Fortus et al., 2005; Puntambekar & Kolodner, 2005).  Furthermore, the 

scaffolding should include helping students understand the relationship between domain 

different specific knowledge, that is, structural knowledge.   
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EDP process skills.  Most students had good knowledge of the engineering 

design process itself (n=10 rated medium or high), Presumably this came from their 

exposure to the engineering design process due to yearly robotics units since starting in 

kindergarten.   

 

Figure 94.  Ride rating versus EDP knowledge. 

In some cases, having a strong EDP compensated for less developed executive 

function than other students.  Both Boy 8 and Girl 3 were examples of this.   Students 

with advanced EDP skills exhibited subskills such as:  systemic testing (Girl 5), control 

of variables (Girl 5), troubleshooting tactics (Girl 4, Girl 5, and Boy 5) and, in general, a 

good balance of time spent in different EDP phases, most notably some up front planning 

and research (Boy 5, By 8, and Girl 8).   While students showed good EDP overall, 

instructions in specific techniques such as control of variables or domain specific 

troubleshooting tactics will benefit students.  

General Executive Functions Skills  
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While many executive functions (EF) are used in open-ended design problems, 

three in particular emerged as playing a key role in this study.   See Figure 6 for complete 

taxonomy of executive function skills that may be involved in open-ended elementary 

engineering tasks.   

Casual reasoning.  As I hypothesized, causal reasoning (CR) in the form of 

predicting the effects of design decisions and inference in the form of inferring what went 

wrong when testing were key factors in this study (see Figure 95).   

 

Figure 95.  Ride ratings versus causal reasoning. 

The most successful and advanced builders such as Girl 5, Boy 5, and Girl 8 had 

strong CR skills as measured by the summary rubric and secondary coding.  Skill in 

prediction increased the likelihood of making productive design decisions more often 

than students with less developed CR skills.  Good inference skills allowed faster 

determination of non-productive design decisions so they could be corrected.  Boy 5 had 

very good prediction skills.  In this example, he decides to use a gear piece as a connector 

to hold the seat assemblies. 
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[00:44:31]	[BUILD-NORMAL]	[2:PLAN]	Boy	05:	I	would	need	to	add	a	gear.	

Researcher:	Oh,	gear.	What's	the	gear	do?	

	
[00:44:40]	Boy	05:	It	would	turn	the	swings.	

His successful projection (prediction) saved him time and effort and also worked 

well functionally. See Figure 96 for a picture of the gear and how it was used.   

 

Figure 96.  Boy 5 successfully predicted that this gear would work well as a connector for 
all the seat subassemblies. 

 I found that, in many cases, it was hard to determine if an incorrect prediction was 

a result of lack of structural knowledge or lack or CR or both.  For example, if the motor 
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is not connected to receive power, did the student not have the knowledge to understand 

that is needed to be connected or did they have the knowledge but did not have the CR 

required to use that knowledge?  One interesting example of this was Boy 8, who put the 

motor on the seat rather than a tower type structure.  He did not predict that the cord 

would become tangled even though it seemed obvious to me. See Figure 46 for a 

photograph.  Note that if there is missing domain knowledge, there is no way that the 

student can create structural knowledge, which, by definition, integrates different domain 

knowledge.  Again, this could be misinterpreted as a lack of causal reasoning skills.   

 There is some evidence to suggest causal reasoning and the lack of structural 

knowledge (SK) can be separated.  Girl 4 scored high in CR and low in SK.  Girl 9 

scored medium in CR and low in SK.  Girl 9, in particular, used good CR skills to 

compensate for low SK.  It seems likely that lack of SK can appear to be lack of CR but 

that they are, in fact, two different phenomenon.  

 CR is generally considered to be developmental (Fuson, 1976; Piaget & Inhelder, 

1969) and there were more high CR sixth graders than second graders.  Open-ended 

engineering problems appears to be a good activity type to help develop CR in the form 

of prediction and inference as long as students also have the required structural 

knowledge as a basis for CR.   

Planning.  Planning was another key factor in elementary student engineering 

though its importance depended on a number of other factors.  See Figure 97 for the 

relationship between planning and the final ride rating for this study.   
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Figure 97.  Ride rating versus planning. 

Note that planning depends on causal reasoning, specifically, prediction 

(Jonassen, 2000).  Most students had a clear planning style, which can be described as 

either a serial (Boy 6, Boy 7, Girl 6, Girl 9, Boy 3, Boy 4, and Girl 3) or systems 

approach (Boy 8, Girl 8, Boy 5, and Girl 5).  Girl 4 had elements of both styles of 

building.   

At 4:36, Girl 3 clearly states the serial building approach.  

Researcher:	 When	you	are	thinking	about	your	Ferris	wheel	do	you	plan	just	the	first	
part	and	then	worry	about	the	rest	later	or	do	you	have	an	idea	in	your	
head	about	what	the	whole	thing	is	going	to	be?	

[00:04:36]	Girl	03:	I	usually	just	start	with	one	thing	and	see	how	it	goes.		[IMPORTANT]		
 

In the case of Girl 3, who was unable to finish her ride, the lack of an overall idea 

before building caused her major problems in getting her subassemblies connected at a 

later time.  Her ride, which is similar in concept to that of Boy 5 and Girl 5, would likely 

have been more successful with an overall system plan.  Girl 5 and Boy 5 were able to 

successfully build the same ride concept as Girl 3 but had a clear plan of building a base, 
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tower, rotating seat assembly, and seats ahead of time and in that order.   However, there 

were many successful serial builders who choose less complex builds such as Boy 6 and 

Boy 7.  

 The implication for teaching is that the use of a systems approach is a useful tool 

to teach and will especially help students with complex designs and low CR skills.   

Also note that having immediate access to the building materials (LEGO pieces) may 

encourage a more serial or tinkering approach as opposed to a more formal pencil and 

paper engineering planning and design approach typical of engineering processes 

research at the undergraduate level (Atman et al., 2007).   

Cognitive flexibility.  Cognitive flexibility (CF) emerged as our final important 

EF factor in the study.  I thought of this two ways: positive and negative.  A positive CF 

in this context consisted of being willing to start over on a major part of an idea and 

having many different ride ideas or ideas for a particular subassembly.  A negative CF 

was thought of as non-optimal persistence.  This was typically seen as repeated stability 

or other issues that the student would keep repairing but never address the underlying 

issue.  Boy 7, for example, continually tried to make his ride spin with a solid axle to 

cross connection so he had to hand start his ride.   

Figure 98 shows the relationship between CF and the final ride rating for the 

students in this study.  Two students - Boy 7 and Boy 8- had low CF but were able to 

compensate for it with strengths in other key process skills or structural knowledge.   
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Figure 98.  Ride rating versus cognitive flexibility (CF).   

  The implications for teaching in terms of CF are as follows.  First, students 

showing non-optimal persistence need either encouragement to rethink what they are 

doing and start over or may be lacking a specific piece of domain knowledge.  In the 

example of Boy 7 above, he needed to know that an axle needs to be inserted into a cross 

piece to make a stable connection. Of course, positive persistence or positive CF should 

be encouraged.  Now that all the key factors have been explained, how do they all fit 

together?  

Model of build complexity, structural knowledge, and process skills.  Leaving 

out build complexity for a moment, we can envision the continuum of process skills and 

structural knowledge for each student as shown in Figure 99.   
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Figure 99.  Structural knowledge and process skills. 

Students can be thought of as being in one of four quadrants.  Each one is explained 

below. The green arrow shows where we want students to go.  

• High SK, High Process Skills - students in this group are in an excellent position 

to tackle complex engineering problems.  We did see that complexity should be 

high or the problem will be too easy as we saw with Girl 8 in this study who 

completed her ride without much failure or iteration.   

• High SK, Low Process Skills - while there were no clear examples of this in this 

study, some students with high SK did have gaps in various domain specific or 

executive function skills.  Students in this group need instruction or scaffolding in 
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domain specific skills such as applying mathematics or science, the EDP, or 

design principles such as stability and symmetry.  Teachers might also identify 

and help students with low EF such as planning, causal reasoning, or cognitive 

flexibility.  Students in this quadrant may do best with medium complexity tasks.  

They may also do well with high complexity tasks with sufficient scaffolding.     

• Low SK, High Process Skills - students in this group need scaffolding in LEGO 

connection and other domain specific skills.  SK will be improved just by doing 

LEGO engineering activities.   Many students compensated (Girl 9, Boy 8, and 

Girl 4, for example) for low SK with other strengths such as high EDP or strong 

CR or CF. Teachers or LEGO itself can create building activities that help teach 

structural knowledge of LEGO connection techniques.  Teachers should try to 

identify the specific process strengths and lacks and provide the appropriate help.  

For example, if it is clear that the student’s knowledge of the EDP is weak, that 

can be emphasized.  Students in this quadrant may do best with medium 

complexity tasks.  They may also do well with high complexity tasks with 

sufficient scaffolding 

• Low SK, Low Process Skills - students in this group need scaffolding in multiple 

domain specific process skills and/or executive function skills and also need help 

with structural knowledge of LEGO connection techniques.  Students may need to 

lower complexity tasks or significant time or scaffolding with medium or high 

complexity builds.  

Now, let’s examine the model of build complexity, process skills, and structural 

knowledge in three dimensions as shown in Figure 100.   
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Figure 100.  3D model of build complexity, structural knowledge, and process skills. 

Point (1,1,1) indicates a low complexity, low skills, and low SK student.  The 

goal is to move this student to medium complexity, medium skills, and medium SK point 

(2.2,2) shown in the graph.  Likewise, those students would ideally move to the high 

complexity, high skills, and high SK point at (3,3,3).  The line connecting (1,1,1) to 

(2,2,2) to (3,3,3) represents an ideal case where students move to higher complexity with 

a balance of SK and process skills.   

The point at Complexity = 2, Knowledge =2, and Process Skills = 1 indicates a 

student with a medium complexity, medium SK, and low tools.  In this case, teachers can 

help move this student more to the centerline by scaffolding their EF or domain specific 
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process skills.  The blue point at Complexity = 1, skills= 2, and SK =3 indicates a student 

with a low complexity build, medium skills, and high SK.  This student may need a 

higher complexity build and also some scaffolding in one or more process skills.  Now 

that a model that explains the EDP timelines for all students in this study as function of 

build complexity, structural knowledge, and key executive function and domain specific 

process skills has been presented, other specific results will be presented.   

Specific Conclusions  

Engineering Design Process (EDP), Causal Reasoning (CR), and time.  I 

found it helpful to think about time and how it relates to EDP and CR when coding the 

video of elementary students doing open-ended engineering challenges using LEGO 

robotics materials.   The following diagram (see Figure 101) summarizes these 

relationships.  
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Figure 101.  EDP, causal reasoning, and time. 

 
Predictions are defined as anticipating an outcome based on the initial state of a 

system and plausible causal relationships. Inference is defined as the opposite process as 

prediction, that is, positing events and initial conditions based on a final set of conditions 

and plausible causal relationships. (Jonassen & Ionas, 2008)  Time can also be seen as a 

way to separate prediction from inference.  That is, prediction is based on future causal 

relationships while inference is based on teasing out causal relationship in the past.  

Building takes in the present moment. Sharing out can be seen as involving the far past.  

Engineers share out their result when finished.  Planning can be seen as involving the far 

future while research takes place in the near future and is focused on more immediate 

results.  I found this model helpful when coding in cases where determination of the EDP 
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phase was ambiguous: 1) looking at verb tenses, 2) classifying the time aspect of the 

utterance, or 3) determining from the video what the verbal output referred in terms of the 

past, present, or future activity.  

Here is an example of the PLAN code.  Note that the subject is talking about the 

(relatively far) future.  While not making a specific scientific, causal prediction in this 

case, he is predicting what he will do in the future.  I noted that the physical segment 

descriptor {gesturing} was found frequently when planning.  This is likely to be for two 

reasons.  First, the model is not built yet so it is not possible to demonstrate by moving 

the model.  Second, subjects acting out the idea physically as a way to make the abstract 

more concrete (Sullivan & Lin, 2012; Sullivan & Heffernan, 2016).   

[00:02:21]	[PLAN]	Boy	05:		I	think	I'm	going	to	make	swings	that	swing	around.	

	
Predictions (coded as PROJECTION in this study) typically occur when the 

subject is planning as shown below.  Predictions always involve the future.  While not all 

planning (and research) involves explicit cause and effect predictions, all predictions 

seem to occur in the context of planning.  (They might also be seen in RESEARCH but 

have not been seen there to date.)  

[00:29:26]		{moving}	[2:PLAN]	Boy	05:		Now	I'm	thinking	that	if	I	have	a	longer	piece,	I	
can	just	add	that	and	there's	no	need	to	add	this.		[PROJECTION+]		

 
In the example of RESEARCH below, the subject is describing a more immediate 

move where he is physically trying out something to see if it will work. Planning, since it 

is farther out in time, does not involve physically trying these out but is typically done 

verbally (or with drawings in a few cases).  The {moving} segment descriptor is typically 
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seen with RESEARCH (or EVALUATE).  However, the subject is not actually 

connecting anything (which is usually building).   

[00:20:29]	{moving}	[RESEARCH]	Boy	05:	I'm	thinking	of	a	way	to	connect	it	on	it.	(Tries	
out	motor	in	place.)	

 
Next is an example of building.  (She also evaluates when she comments that it is 

balanced.) The subject is describing what she is currently doing in the present and uses 

the present tense.  The {connecting} segment descriptor is always seen with building.  

(Connecting can also happen when the subject is making a separate side research build to 

try out an idea.)  

[00:27:52]	{connecting}	Girl	05:	Okay,	now	I'm	putting	the	other	motor	on,	so	now	it's	
balanced.		

Evaluation involves the near past.  The subject builds and then evaluates what 

they have just built.  (In rare cases, this could be delayed for a while if the subject notices 

something that needs testing “after the fact”.)  Like RESEARCH (which is the analogous 

operation in the near future) the subject is typically moving parts to test out some aspect 

of it (EVALUATE) or try out a part without actually connecting it (RESEARCH).  

[00:09:55]	{moving}	[EVALUATE-PHYSICAL]	[EVALUATE-VERBAL]	Boy	05:		I'm	now	trying	
to	see	if	they're	lined	up	properly.	(Referring	to	something	he	just	built.)		

Explicit inferences involve the past and most often occur in the context of a verbal 

evaluation where the subject verbalizes the cause of a problem found.  (It may also be 

found in SHARE-OUT but has not been seen there to date.)  Note that past tense in this 

example. 

[00:35:10]	[2:EVALUATE-VERBAL]	Boy	05:	The	problem	was	it	has	a	gap	in	it,	so	I	can't	
attach	this	to	line	up	like	this.	[INFERENCE]		
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SHARE-OUT typically occurred in the post interview prompted by the researcher 

(and therefore was not coded).  However, it is the analog of planning in that it involves a 

description of what happened in a more distant time.  Sharing out frequently involves 

gesturing just like the analogous planning EDP phase.  

[01:18:41]	{gesturing}	Girl	05:	The	description	is	the	upside-down	...	The	name	of	the	
ride	is	the	Upside-down	Cake	Ride	because	it	looks	like	an	upside-down	
layer	cake.	On	one	side	it	shows	a	kiddie	ride	for	younger	kids,	and	this	
is	for	people	who	just	like	to	throw	up.	The	gears	on	one	side	make	this	
side	go	really	fast,	and	this	goes	not	as	fast,	and	there	are	two	motors	
and	a	lot	of	LEGOs.		

How did the notion of time help in the coding of students’ EDP?  To give one 

example, the verbal output of the subject in the snippet below seemed to indicate 

planning.  However, the video clearly showed that she was describing what she was 

building in the present moment so that helped determine the code as BUILD and not 

PLAN.  

[00:10:18]	[BUILD-NORMAL]	Girl	06:	I	think	if	I	put	them	together,	and	then	if	I	put	this	on,	
and	then	if	I	would	put	this	on,	and	then	if	I	would	put	that	on	...	
(Sounds	like	planning	but	from	the	video	we	see	that	she	is	really	
just	describing	what	she	is	doing.)		

In summary, the theoretical notions of prediction and inference are related to the 

engineering design process.  Coupled with the observations of temporality in the verbal 

output of elementary aged subjects doing open-ended engineering challenges, a model 

was created that links time, EDP phases, inference, and prediction in a way that helps 

determine EDP phases in research videotape sessions.   

EDP phase frequency, time, and average duration graphs.  There was no 

discernable pattern to the EDP frequency and average duration graphs of students in this 



 

 230 

student.    However, eight of nine students %EDP Phase Time graphs showed one of two 

typical patterns (see Figure 102 and Figure 103) if the student’s EDP and build 

complexity were medium or higher.  Both patterns show significant time spent in each 

EDP phase (with the exception of programing) with the most time spent building.   

 

Figure 102.  Typical staircase %EDP phase time graph. 

 

 

Figure 103.  Second type of typical %EDP phase time graph. 
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On the other hand, a different pattern than the ones above generally indicated a 

problem.  For example, shows that a student did not chose a build complexity that 

matched her tools so no research and little evaluation was needed.   

 

Figure 104.  Atypical %EDP phase time graph. 

 
While formal measurement of EDP phase time would be difficult in the classroom 

setting, teachers could informally monitor for unbalanced engineering design processes.  

For example, teachers might suggest more research, planning, or evaluation if none of 

those is detected.  The EEC (Heffernan, 2013) requires some planning to be done (though 

lower grade students typically veer away from their original plans).  

Role of development. The initial thesis of this study was that developmental 

factors, such as reported by Piaget (Piaget & Inhelder, 1969) in the realm of mathematics, 

would also be found in students in this study, which compared second and sixth grade 

students. However, significant differences by age were not found.  The exception was in 

the area of executive function, casual reasoning in particular, which was somewhat more 

developed in grade 6 students.  Also, as predicted by theory (Baynes, 1994; Vygotsky, 
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1986)  designerly (also called creative or fantasy) play was seen more explicitly in grade 

2 students (n=61) but was also seen (albeit more subtlety) in grade 6 students (n=23).   

Students used age appropriate materials so greater differences might be seen if students 

had used the same materials. As predicted by neo-Piagetian constructivism, universal 

Piagetian stages were not found but a web structure of different stages for different skills 

was verified.  Additionally, both domain specific and general cognitive skills were found.  

Finally, the mental inflexibility sometimes found in tool innovation research was found in 

similar way here, that is, with some students and more at younger ages.  

 While I had an original hope that this research might form the basis of defining a 

learning progression (Krajcik, 2011) for students, significant developmental differences 

were not found.  I can conclude that good structural knowledge of LEGO connection, 

building, and programming techniques form a perquisite base for many of the other 

factors such as casual reasoning, the application of mathematics and science, and 

planning.  Good knowledge of design principles and the EDP are also helpful for students 

to have before undertaking open-ended design tasks.   

Applicability of the Informed Design Teaching and Learning Matrix.  Recall 

that Crismond & Adams (2012) defined a Informed Design Teaching and Learning 

Matrix meant to help define novice and expert levels for each part of the EDP along with 

teaching strategies and learning goals for each EDP phase.  For example, in the General 

Ideas phase, they say that novices:  “work with few or just one idea, which they can get 

fixated or stuck on, and may not want to change or discard” while experts “Practice idea 

fluency in order to work with lots of ideas by doing divergent thinking, brainstorming, 

etc.” (p. 748).  This particular row of the matrix fits well with the cognitive flexibility 
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factor identified in this study.  However, many other rows had expert columns that were 

too advanced for the elementary level.  They were not seen or rarely seen.  An example 

of this is:  “Use words and graphics to display and weigh both benefits and tradeoffs of 

all ideas before picking a design” (p. 748).  So, while the matrix is quite useful, it may 

need to be adapted for elementary students.   

Role of programming. An examination of the EDP timelines show very little 

time spent programming.  Some students (n=3) choose to not even use the computer for 

their ride.  Some of this could be that the time limit and less adult direction in the 

research setting.  Programs were very simple typically with a few exceptions.  I do see 

more developed programs when the same assignment is done in classrooms with partners. 

However, the animation of the rides was very important to those students who use a 

motor.  So programming played a small but important role for students in this study.  

With the current focus on early programming, we can say that teachers should teach and 

encourage programming in young students and that robotics is a rich way to introduce 

coding to students.    

Parts first versus idea first.  I saw two styles of LEGO building in this study.  

One was looking at parts first to generate ideas and the second was to find parts to 

implement ideas, which I call idea first.     

Boy 07, for example, showed evidence of the parts first style.   

He actually articulated this in the post-interview as follows:   ‘Because I never 

know what I'm going to build until I find a piece, and I'm like, "Oh, that piece 

could be used for this, and I can make that out of it," and that's what I usually do 

at home.’  
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 Boy 4 also articulated the parts first style.   
 

[00:26:51] Boy 04: I'm just looking for parts to see if they give me any inspiration 
for something new. [IMPORTANT]   
 
Other students such as Girl 5 and Boy 5, who used more planning, used an idea 

first style in general.  Some students used both styles in the same build.  Both styles can 

work but we did see that in the case of more complex builds, that planning or an idea first 

style could be an advantage to students.  

Sharing out side effect.  Some students modified their ride during the post 

interview sharing out.  This should be expected as they found things they wanted to 

improve during the demonstration. Here is an example from Girl 6. 

Researcher:	 You	all	done?	All	right,	I'm	going	to	ask	you	a	few	more	questions	about	
your	ride.	Can	you	describe	your	ride	and	demonstrate	how	it	works?	

[00:21:22]	{moving}	[SHARE-OUT]	Girl	06:	There's	a	person	holding	it,	and	it's	turning,	
and	it's	going	in	circles.		[CREATIVE-PLAY]		

[00:21:31]	{searching}	[BUILD-NORMAL]	[2:PLAN]	Then	I'm	going	to	try	to	make	steps,	so	
he	can	get	out.		[IMPORTANT]		
 

Prevalence of simultaneous EDP phases.  It was very natural for children of all 

ages to do concurrent EDP phases when building with LEGO.  That is, students easily 

talked about one EDP phase while performing another one with their hands.  This was a 

widespread phenomenon.  There did seem to be a range of responses in terms of the 

ability of students to talk aloud and build at the same time.  Some students like Boy 4 

struggled to talk aloud and build at the same time while others, Girl 5, for example, could 

build, talk aloud, and plan (or otherwise engage in separate talk and build EDP phases) 

easily at the same time.  Girl 5 was even seen searching for parts with two different hands 
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simultaneously.  The methodology used in this study (or another like it) that accounted 

for separate EDP phases would be required for any similar research if an accurate picture 

of students’ EDP processed is desired.   

Transition rates.    Transition rate is defined as the average number of EDP 

phases changes per unit time.  Some researchers (Atman et al., 2008, 2005) have found 

that higher transition rates are a positive factor in engineering processes of  

undergraduate students. This result was not found in either grade 2 or grade 6 elementary 

students.  See Figure 105.  No relationship was discerned between transition rates and 

other factors for the students in this study.   

 
Figure 105.  Transition rates versus overall tools and ride rating. 

Role of imagination.  Students’ choices in this study in some cases met their 

needs perfectly but would not have met the expectations of teachers or expert LEGO 

builders. For example, the roller coaster of Boy 3 had LEGO pieces laid down freely on 
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the table without even being connected.  Three students did not use a motor in their 

designs. Students were also fine with the filling in of important details with their 

imaginations.  For example, Boy 04 uses an impromptu wheel as a cart when asked to 

demonstrate ride at the end.  Girl 9’s ride was not really functional but she felt that is was 

close enough and could be imagined.  Here is how she explains this. 

[00:20:30]	[2:PLAN]	Girl	09:	Uh-huh.	I	think	it's	going	to	move.	I	don’t	know	how	to	make	
it	move	this.	It's	probably	just	going	to	make	it	so	the	handle	spins.	
[IMPORTANT]	[PROJECTION=]		

 

Perhaps on their own, students recreated as well as they could their own internal 

representations of ride, rather than trying to represent the adult, “accurate”, actual ride.  

This is also another example of kids being fine with not having things work in a way that 

would be important for adults.  As our final example, Girl 6 explains that a detail she 

could not build will be put in her post make drawing and that will meet her needs.   

	
[00:22:31]	Girl	06:	I	can	do	it	when	I'm	drawing	it.			[IMPORTANT]		
 

Teachers should be aware of this difference in how the models are viewed and be 

tolerant, to the extent possible, of student imagination in filling in important details in 

their work.   

Role of teacher prompts.  As in the pilot study, teacher scaffolding in the form 

of a neutral suggestion or question triggered learning. Girl 5 does not understand why her 

geared up ride had fifty rotations when she programmed ten rotations, at least initially.  I 

suggested she count the other seat instead, which was directly coupled and which I knew 

would rotate ten times. This caused an important learning moment where she figured out 

the relationship between number of rotations and gearing up. At another point in her 
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build, I restated a science concept about gearing up that she has articulated previously.  

This also caused her to solve her design issue.  This shows that teachers should be aware 

that simply restating information or asking questions can trigger significant and deeper 

learning than might be obtained from giving the answer to the student.   

Limitations of Study  

Methodology limitations.  The coding of the engineering design process of 

students is an approximation and it is not possible to be 100% accurate because some 

building and verbal moves could be interpreted in different ways.  However, the IRR 

showed consistent interpretation across multiple students.  Also, students did not always 

verbalize their thinking perfectly.  But the use of the dual physical track helped to 

ameliorate this limitation.  

Mixing VPA and clinical interview techniques is also limitation of this study 

since there were cases where the clinical interview questions could influence the process.  

For example, my scaffolding questions that triggered learning in Girl 5 would not be 

considered a pure VPA where the researcher only asks what the subject is thinking.  

However, the additional information gained from the clinical interview question was 

worth any possible distortion in the students’ processes.  The varying ability of students 

to verbalize their thinking is also a possible source of some error.  

Small sample size.  The small sample size of twelve was also a limitation of this 

study.  However, the time involved to segment, code, and process the video was already 

substantial and is a limitation of this kind of research (Atman & Bursic, 1998).  It was 

also a challenge to find qualifying, typical students at the small rural school and the 
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makeup of the students was in this small, rural public school not typical of many public 

schools.   

Session Time. The fact that I had to videotape twelve students “in my spare time” 

given the other demands of my position created some pressure for students to finish their 

builds.  Ideally, there would have been less pressure and more time for students to work 

on their designs.  Some creativity such as complex programs and sounds may have been 

limited by the single session time limit.  Students typically do more finishing touches in 

the classroom setting when they have more time.   

Future Research  

Further analysis of subcodes and secondary codes. Time constraints precluded 

a full analysis of subcodes and secondary codes.  However, the rich data set offers 

potential for further analysis of subcodes such how much students built versus rebuilt, for 

example.   The secondary coding, which was partially completed also could offer 

additional insights into the causal reasoning, creative play, and other aspects of EDP of 

the different students.   

Relative importance of different factors.  The relative importance of the 

different factors identified in this study is unknown and could be a topic for future 

research.    For example, structural knowledge seems more important than both 

design principles and application of mathematics and science but the exact 

relationships are not known. Furthermore, future research could untangle some of 

these dependencies between some of the factors.  For example, there seems be a 

dependency between structural knowledge and causal reasoning.  
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Segmenting data.  The segmenting data could provide additional insights into 

LEGO building.  For example, even the simple aggregating of time spent in different 

physical activities looked at by different independent variables such as gender grade 

level, ride rating, and overall tools could provide insights into the efficacy of different 

physical move profiles. 

Planning types.  Additional codes for different types of planning could be useful 

in future research to differentiate long and short term planning.  This could be added to 

the EDP timeline to further differentiate short (serial) and long term (system) planning 

and EDP styles in general.   
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CHAPTER 7  
 

CONCLUSION 
 

Development and gender were not significant factors in determining the EDP or 

the success of designs in this study with the exception of executive functions such as 

causal reasoning, which, in particular, showed some evidence of an age related 

component. Elementary students’ engineering design processes (EDP) were defined 

instead by build complexity and the overall tools that students brought to the task.  These 

tools were found to be structural knowledge of LEGO and a combination of executive 

function (casual reasoning, planning ability, and cognitive flexibility) and domain 

specific process skills (EDP process knowledge, application of design principles of 

stability, symmetry, and scale, and application of mathematics and science).  Note that 

three of these - structural knowledge, EDP process knowledge, and design principles - 

were found in the literature review as being utilized by experts.  Since these particular 

factors did not appear to be developmental, this suggests that they could be taught to 

students explicitly.   Additional research is needed to determine more accurately the 

relative importance of the different factors.  See Figure 106 for a diagram of these key 

factors.   
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Figure 106.  Key factors found in study. 

What are the primary implications of these findings?  Students with high tools 

that choose a low complexity build had an idealized EDP without much need to research 

or evaluation.  These students need a more challenging assignment.  Students with low 

tools and a high complexity build may get stuck in research and may need scaffolding in 

planning, structural knowledge or other process skills.  Other educational implications 

were found primarily on how to effectively scaffold the various process skills.  For 

example, neutral questions or restating knowledge can trigger deep student learning.   

Elementary engineering based on LEGO robotics in a K-6 yearly program showed 

rich affordances to develop student engineering and executive function skills.  While not 

a part of this study, students also develop 21st century skills of collaboration, 

communication, and creativity.  Additionally, students have shown high interest and 

enthusiasm for these open-ended engineering challenges based on LEGO and 

programming.  My hope is that this study has provided significant characterization, 

insight, and implications for teaching elementary engineering to help sustain the natural 
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interest and ability of young children to design, build, and program to help overcome the 

complex problems of today.  
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 APPENDIX A  
 

CODE BOOK  
 
DESIGN ATTRIBUTES 
 
These codes describe the prototype at the end of the session.   
 
DESIGN ATTRIBUTES - specific attributes of the design that can indicate the 
complexity or other aspects of the prototype.  
 

• NUMBER-PARTS - number of parts used in final prototype.   
• NUMBER-STEPS - number of steps/blocks in final program.  
• CREATIVITY - subjective rating of whether design did (or did not) shown 

originality (4 highest to 1 lowest) 
• FUNCTIONALITY - rating of how well the ride meets the design criteria.   
• PROCESS - rating of the subject’s engineering design process specifically with 

respect to causal reasoning and planning (4 highest to 1 lowest) 
• RATING - overall rating using a rubric; mean of above 3 aspects - creativity, 

functionality, and process  (4 highest to 1 lowest)  
• STABLE - final design is stable (1/0)  
• SYMMETRICAL - final design is symmetrical (1/0)  
• SCALE - final design is to scale (1/0)  
• USE-COMPUTER - subject used the computer to animate the prototype.  (1/0) 
• USE-CRAFTS - the subject used craft materials (includes blocks) in the 

prototype.  (1/0) 
• USE-DIRECT-COUPLING - the ride uses direct coupling of motor to axle to 

move.  (1/0) 
• USE-GEARS - the ride uses gears to move.  (1/0) 
• USE-MOTOR - the rides uses a motor.  (1/0) 
• USE-PULLEYS - the ride uses pulleys between to move.  (1/0) 
• USE-SENSOR - the ride uses a sensor.  (1/0) 
• USE-PLANNING - the student produced planning artifacts on paper before 

building.  Post-make builds are not counted.  (1/0) 
• TIME - elapsed time of build.  Not judged in any way but captured as a possible 

item of interest. 
 

ENGINEERING DESIGN PROCESS PHASES  
 
These codes describe the engineering design process.  In the case of clear, overlapping 
design phases, code the verbal with [2:name] and then indicate the end with [2:END] 
Code the end of the session as [END], which is normally the start of the post-interview.  
If the subject starts building again during the post-interview, delay the end until building 
is complete and code that building.   
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BUILD-NORMAL - normal building, which includes looking for parts unless the looking 
for parts was researching the feasibility of a potential design or subsystem.  If the subject 
is describing what they are doing now, count as building and not planning.  The use of 
present tense verbs help indicate building.  Count cleaning up and organizing as BUILD-
NORMAL. Measuring a part by comparing it in place is part of building and not 
RESEARCH.  Referring to a plan (drawing) to build is BUILD-NORMAL.   
BUILD-REBUILD - rebuilding (fixing) something that built previously.  This includes 
building it in a different way as well as reattaching a subsystem that fell off for example.   
EVALUATE-PHYSICAL - evaluate model by testing physically. Trying out pieces in 
place (without connecting them) to see if they will work is counted as RESEARCH.   
EVALUATE-VERBAL - evaluate model without any physical test by talking.  Include 
comments about the process.   
EVALUATE-VISUAL - evaluate model by looking without touching or talking.   
EVALUATE-SYSTEM - evaluate the whole system including the program by running 
the program.   
PLAN - subject was planning some aspect of their design, typically verbally.  Do not 
count describing what the subject is currently building.  That should be coded as building. 
If the subject is verbalizing what they are planning to build in the future, even if it is the 
immediate future, count as planning.  The use of future tense verbs help indicate planning 
(for example, “I will …”, “I am going to”, etc.).    Plan can include giving rationale for 
their plan, demonstrating their plan, or evaluating the  plan itself (such as drawings).   
Sometimes planning can be inferred depending on the surrounding activity when the 
physical activity segment is coded as no_activity and the subject is not talking.  If subject 
verbalizes the need for the next, identified, single part, count that as BUILD (for 
example, “I need another one of these”).  If they verbalize the possible use of a single 
part (“I could use this one at the end” for example), count as PLAN.  If they verbalize the 
need for more than one part, count as PLAN.  
PROBLEM-SCOPING - subject tries to clarify the problem as defined by the researcher, 
typically by asking a question and/or gathering more information about the problem (not 
about a possible solution, which is research).  Include questions about the process.   
PROGRAM-NORMAL - Programming the robot. Connecting the USB cable and 
downloading programs (for NXT) are counted as PROGRAM-NORMAL.   
PROGRAM-REPROGRAM - Fixing a previous program.   
RESEARCH - researching a problem or possible solution.  Looking for parts can be 
considering research if it is affecting major design decisions before building starts or 
during the build.   Otherwise, consider it part of building.  If there is a small, separate 
builds to test out a possible solution, code that as research.   When the small, separate 
build is evaluated, consider that research as well.  Trying out pieces in place (without 
actually connecting them) with the intent of evaluating for suitability is considered 
research.  However, do not count measuring a part by comparing it in place, which is part 
of building.   
SHARE-OUT - the student is sharing out without being prompted.  Normally not used 
since sharing out is part of the post interview.  However, this should be used if the 
student is sharing out unprompted or is prompted but later starts building again.    
Specifically, use this code if the subject is making post-make drawings.    
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DESIGN PROCESS - Strengths and Challenges  
 
These categories and codes describe behaviors seen during the design process that relate 
to strengths and challenges during the task.  Codes in italics were added from theoretical 
frameworks or existing research.   
 
CAUSAL REASONING - subject exhibiting aspects of causal reasoning.  Some codes 
have values of + (successful), - (unsuccessful), or = (neither successful or unsuccessful).   

• CONTROL-VARIABLES - subject attempted to control variables to isolate a 
cause.  (+/-/=) 

• INFERENCE - subject made a inference as to why something occurred, typically 
while troubleshooting.  (+/-/=) 

• MAGICAL-THINKING - subject attributed an effect to a magical cause. 
• MULTIVARIATE-REASONING - subject attempted to deal with multiple variables 

at the same time.    (+/-/=) 
• PROJECTION  - A simple cause and effect projection. X will happen because of 

Y. In the pilot study, there was a separate code for significant incorrect 
projections.  These will be noted as -- here.  (+/-/=)  

• SYSTEMS-THINKING - the subject showed an understanding of the complete 
system he or she designed and how the different subsystems interrelate.  (+/-/=) 

 
DESIGNERLY PLAY - exhibiting explicit signs of designerly play 

• CREATIVE-PLAY - subject shows creative play by using mini-figures, 
verbalizing story lines, etc.   

• TALK-TO-ROBOT - the subject talked to the robot as if it were a living being. 
This is also known as anthromorphisation.   

• PLAYFUL-TALK - elements of “humor, puns, teasing, music making, and other 
word play”   
 

 
DESIGN PRINCIPLES- codes indicating aspects of design noted.  Some codes have 
values of + (successful), - (unsuccessful), or = (neither successful or unsuccessful).   
 

• SCALE - student was concerned about the proper scale of his/her design.  
• STABILITY - the subject was concerned with stability issues or the design had 

stable or unstable attributes.   
• SYMMETRY - Subject built symmetrically or is concerned about symmetry or 

balance.   Negative sign indicates that asymmetrical qualities of the design were 
noted.   

 
DESIGN PROCESS - codes indicating aspects of the design process noted. 

• CONNECTOR-META - subject showed structural or meta knowledge of LEGO 
connectors either verbally or clearly demonstrated in their building process.  (+/-
/=) 
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• IDEA-FIRST - subject indicated verbally that they were looking for specific parts 
to instantiate a design idea.   

• PARTS-FIRST - subject indicated verbally that they were looking at parts to help 
them come up with a design idea.   

• PLAN-AHEAD - subject is (or is not planning ahead).  Serial builders do not plan 
ahead.  Other builders look ahead and identify subsystems that will be needed 
ahead of time. = indicates some evidence of near term planning ahead.  (+/-/=) 

 
PHYSICAL - codes indicating challenges with the physical aspect of building  

• FINE-MOTOR - subject exhibits difficulty with fine motor operations such as 
attaching LEGO pieces.   

 
PROBLEM-SOLVING - codes indicating some secondary aspect of problem solving as 
seen in the context of a robotics open-ended challenge. Most codes have values of + 
(successful), - (unsuccessful).  If unsuccessful, they used the strategy but it did not help 
or actually hurt their efforts.   

• ATTEND-CONSTRAINTS - subjects attending (or not) to the constraints of the 
problem (ride is specified to be safe and interesting).  (+/-) 

• MATH - student used math to help solve a problem.  (+/-) 
• PERSISTENCE - the subject was persistent in solving a problem. Note that, as 

seen in the pilot study, this can be non-optimal if the subject needs to do a 
significant redesign and is reluctant to do so.  + also indicates flexibility in terms 
of “starting from scratch” if an idea is not working.  (+/-)  

• PROBLEM-SOLVED - subject solved or did not solve a significant problem that 
was encountered and a solution attempted (+/-)  

• SCIENCE - the student used science to help solve a problem. (+/-) 
• SEQUENCING - the subject was concerned with building or programming in a 

certain order required to solve the problem.   (+/-) 
• TROUBLESHOOTING-TACTIC - the subject used a general purpose tactic for 

troubleshooting, such as stepping back to examine their design, looking at a 
design from different angles, or using the WeDo or NXT connection information 
for troubleshooting.  The exact tactic used is noted.  (+/-) 

• SYSTEMIC-TESTING - subject used a through and systemic plan for testing the 
system.  (+/-)   

 
SUBJECT ATTRIBUTES - attributes of the subject determined by interview or by 
classroom and technology teacher 

• GRADE- second or sixth (2 or 6)  
• GENDER- male or female (M or F)  
• LEGO experience at home - (1 or 0) 
• SELF-EFFICACY - self-reported confidence in building and programming LEGO 

robots  (1 low to 5 high)  
 

RESEARCH PROCESS  
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These codes indicate something about the research process itself.  
 

• HELP - The researcher gave help to student.  This is noted as a code so it will not 
be counted as an action of the subject.  

• IMPORTANT - an important and significant event occurred that might benefit 
from further analysis.   

• WAIT - student had to wait for researcher or was temporarily interrupted in some 
way for at least 2 seconds.  This can also include side talk with the researcher that 
is not related to the experiment. For example, use this code when the researcher 
paused the student to take a photograph.  This is used so that this time is not 
counted in any analysis.   

 
UNUSED  

• SEMI-CONCRETE - A semi-concrete projection or test, where the subject, for 
example, brings a part up to another part to evaluate whether it will fit but does 
not end up needing to put the part wholly next to the other part.  (+/-) 
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APPENDIX B  
 

RESEARCH PROMPT 
 
Research Prompt 
 
[Student’s name], I asked you to join me to help me with some of my homework for my 
own schoolwork.  My homework is to better understand how kids design and build robots 
at different ages.  [For returning students only:  You may remember working with me last 
year on an amusement park ride.]  
 
To better understand what you are thinking, I am going to ask you to talk out load as you 
work so I understand what you are doing and thinking.  I may also ask you other 
questions if I am not sure what you are doing or thinking.   
 
Have you ever been to a fair or amusement park?  What rides do you like? [Make sure 
student understands what an amusement park ride is.]  
 
You will now build a model amusement park ride.  It can be like a ride you have been on 
before or it can be one you make up using your own imagination.  You may want to use 
paper to draw pictures or write words that help to plan what you are going to build.  You 
can also tell me in your own words what you are planning to build, if you know that 
ahead of time.   
 
You can use any of the materials you see.  [Show student LEGOs, craft materials, 
wooden blocks.] You may also use a computer laptop to program your ride with motors, 
sounds, or sensors.   
 
You will have about 1 hour to build your model amusement park ride.   
 
Are there any questions before you start?   
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APPENDIX C 
 

PERMISSION LETTER  
 

 ELEMENTARY ROBOTICS CASE STUDY 
University of Massachusetts, Amherst  

 
CONSENT FOR VOLUNTARY PARTICIPATION 

 
My child _________________________________________ may participate in this 
study.  I understand that: 
 

1. My child will be asked to build a robotics project for approximately one hour.  
The researcher will be present with my child and will ask questions while he or 
she builds.   

2. The questions your child will be answering will attempt to determine my child’s 
goals, processes, and thinking related to my child’s building and programming.  
The purpose of the research is to characterize students’ robotics engineering skills 
as they go progress in age.  

3. My child will be videotaped for subsequent analysis. 
4. My child’s name will not be used nor will he/she be identified personally, in any 

way or at any time.   
5. I may withdraw my child from all or part of the study at any time.  
6. I have a right to review the material prior to any publication of the results.  
7. I understand that the results from the study my be included in John Heffernan’s 

comprehensive examination papers, doctoral dissertation, and may also be 
included in manuscripts submitted to professional journals for publication.   

8. My child is free to participate or not to participate without prejudice.   
9. Because of the small number of participants, approximately two, I understand that 

there is some small risk that my child may be identified as a participant in this 
study.   

If you have questions or comments regarding this study, please feel free to contact John 
Heffernan.  John Heffernan’s phone number is 413-320-5816 and email address is 
jheffernan@hr-k12.org.  You may also contact John Heffernan’s chairperson, Dr. 
Florence Sullivan, at (413) 577-1950,  fsullivan@educ.umass.edu, or Dr. Linda Griffin, 
Associate Dean for Academic Affairs and Graduate Program Director at 413-545-6985 or 
lgriffin@educ.umass.edu.   
 
__________________________________________     
Participant’s Signature   Date  
__________________________________________ 
Researcher’s Signature   Date     
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APPENDIX D  

 
WARM UP TASK RUBRIC  

 
 
 Below 

Grade 2  
Typical Grade 
2 

Typical Grade 
6  

Above Grade 6  

 1 2 3 4 
Time to 
Complete 

More than 
15 minutes 
 

10-15 minutes 
 

5-10 minutes 
 

Less than 5 
minutes  

Functionality  Roof does 
not hold the 
load.   

Roof holds the 
load but is not 
sturdy.  Roof is 
not flat.  

Roof holds the 
load and is 
sturdy.  Roof is 
fairly flat.   

Roof is 
completely flat; 
roof holds the 
load and is very 
sturdy.  Roof is 
aesthetically 
pleasing.   

Engineering 
Process  

All trial and 
error.  No 
evidence of 
planning or 
causal 
reasoning.   
Cognitive 
inflexibility 
evident.    

Mostly trial and 
error with some 
evidence of 
planning and 
causal 
reasoning.  
Some evidence 
of cognitive 
inflexibility.   

Evidence of 
planning and 
causal 
reasoning.  
Cognitive 
flexibility 
evident.   

Clear evidence 
of planning and 
causal 
reasoning.  Clear 
evidence of 
cognitive 
flexibility.  
Applies math or 
science to 
problem.  
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APPENDIX E 

  
FINISHED MODEL DESIGN QUALITY RUBRIC 

 
 
 1 2 3 4 
Originality  Design clearly 

derivative or a 
copy of a 
design already 
used.  Design is 
not animated 
with computer 
and robotic 
elements.   No 
decorative 
elements or 
mini-figure use.   

Design is 
animated with 
computer and 
robotic 
elements with 
one-step simple 
program.  One 
decorative 
elements or 
mini-figure use.  
[If not 
animated, has 
some detailed 
build work.]  

Design is 
animated with 
computer and 
robotic 
elements and 
multi-step 
program.  Some 
decorative 
elements or 
mini-figure use.   
[If not 
animated, has 
detailed build 
work.] 

Recorded own sound(s).  
Decorated with craft 
materials.  Very 
inventive design.  
Creative use of mini-
figures and additional 
ride elements. Design is 
animated with computer 
and robotic elements 
and complex program.     

Functionality  Design neither 
safe nor 
interesting.  
Very unstable 
design.   Not to 
scale.  No 
concern for 
symmetry.  
Could not 
finish.   

Design is safe 
or interesting.  
Design 
somewhat 
unstable.  A few 
elements of 
appropriate 
scale or 
symmetry.  Met 
some elements 
of challenge 
and works to 
some extent.   

Design is safe 
and interesting.  
Design is 
basically stable.  
Design has 
some 
appropriate 
elements of 
symmetry and 
scale.  Met 
basic 
requirements 
and is 
functional.   

Design is safe and 
interesting. Design is 
very stable.  Design 
symmetrical (if 
appropriate) and to 
scale.   Use of gears 
and/or pulleys.  Goes 
beyond basic 
requirements and works 
very well.    

Engineering 
Process  

All trial and 
error.  No 
evidence of 
planning or 
causal 
reasoning.   
Cognitive 
inflexibility 
evident.    

Mostly trial and 
error with some 
evidence of 
planning and 
causal 
reasoning.  
Some evidence 
of cognitive 
inflexibility.   

Evidence of 
planning and 
causal 
reasoning.  
Cognitive 
flexibility 
evident.   

Clear evidence of 
planning and causal 
reasoning.  Clear 
evidence of cognitive 
flexibility.  Applies 
math or science to 
problem.  
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APPENDIX F  

 
CODE SCANNER PROGRAM  

 
import string 
import re # regular expressions  
from datetime import datetime 
 
## This program takes a text file exported from Word and checks all the codes and 
timestamps for proper format.    
## 
## 1) Maincodes:  EDP codes such as PLAN, BUILD, RESEARCH along with 
timestamps and durations.   
## 2) Subcodes:  EDP codes such as PLAN, BUILD-NORMAL, BUILD-REBUILD, abd 
RESEARCH along with timestamps and durations. 
## 3) Secondary (or non-EDP)  codes:  related phenomonon such causal reasoning, 
designerly play, and problem solving codes such as PROJECTION, INFERENCE, 
CREATIVE-PLAY.  Some 
## of these have values such as +, -, and =. 
##  
## This program was created as part of a dissertation research project that seeks to 
understand elementary 
## engineering processes. 
## 
## Author:  John Heffernan 
## Date:  May 21, 2016 
##  
 
## Function to get secondary code value, if any.  Returns None is none present.  
Secondary codes can have another hyphen so just extract the last one. 
## Example:  [SYSTEMS-THINKING-] 
                                 
 
## Function to output an error of the transcript coding and the line. 
def printError (error, line):  
        print (error + ' in line ' + line + '\n' ) 
        fouterror.write (error + ' in line ' + line + '\n' ) 
 
 
# Open the transcript file with read only permissions.  File should be plain text, MAC 
OS, Western, Boy LF but 
# 'End Lines With Line Feeds" box not checked.  Export from Word.  Open all the error 
file.   
 
showLine = False 
print ('CODE SCANNER')  
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genderNumber = input ("Gender space Number?") 
inputfilename = genderNumber  + ' Ride Transcript CD.txt' 
errorfilename = genderNumber + 'Errors.txt'  
fin = open(inputfilename, 'r', encoding='latin-1', errors='backslashreplace')  
fouterror= open (errorfilename, 'w') 
 
 
## Construct a regular expression for the timestamps. 
 
timestampRE = r"""\[0[0-1]:[0-5][0-9]:[0-5][0-9]\]""" 
 
## Construct a regular expression for the EDP codes and concurrent EDP codes. 
 
codesEDP = r"""\[BUILD-NORMAL\]|\[BUILD-REBUILD\]|\[EVALUATE-
PHYSICAL\]|\[EVALUATE-VERBAL\]|\[EVALUATE-VISUAL\]|\[EVALUATE-
SYSTEM\]|\[PLAN\]|\[PROBLEM-SCOPING\]|\[PROGRAM-
NORMAL\]|\[PROGRAM-REPROGRAM\]|\[RESEARCH\]|\[SHARE-
OUT\]|\[WAIT\]|\[END\]|"""  
codesEDP2 = r"""\[2:EVALUATE-VERBAL\]|\[2:PLAN\]|\[2:PROBLEM-
SCOPING\]|\[2:SHARE-OUT\]|\[2:END\]|""" 
 
## Construct a regular expression for transcription notes. 
transcription = r"""\[inaudible.*?\]|\[crosstalk.*?\]|""" 
 
##  Construct a regular expression string for the secondary codes.   
codesCR = r"""\[CONTROL-VARIABLES[+-=?]\]|\[INFERENCE[+-=?]\]|\[MAGICAL-
THINKING\]|\[MULTIVARIATE-REASONING[+-=?]\]|\[PROJECTION[+-
=?]\]|\[SYSTEMS-THINKING[+-=?]\]|""" 
codesPlay = r"""\[CREATIVE-PLAY\]|\[TALK-TO-ROBOT\]|\[PLAYFUL-TALK\]|""" 
codesDesign = r"""\[SCALE[+-=?]\]|\[STABILITY[+-=?]\]|\[SYMMETRY[+-=?]\]|""" 
codesProcess = r"""\[CONNECTOR-META[+-=?]\]|\[PARTS-FIRST\]|\[IDEA-
FIRST\]|\[PLAN-AHEAD[+-=]\]|""" 
codesPhysical = r"""\[FINE-MOTOR\]|\[IMPORTANT\]|\[HELP\]|""" 
codesProblem = r"""\[ATTEND-CONSTRAINTS[+-=?]\]|\[MATH[+-
=?]\]|\[PERSISTENCE[+-=?]\]|\[PROBLEM-SOLVED[+-=?]\]|\[SCIENCE[+-
=?]\]|\[SEQUENCING[+-=?]\]|\[TROUBLESHOOTING-TACTIC[+-
=?]\]|\[SYSTEMIC-TESTING[+-=?]\]|""" 
codes = codesCR + codesPlay + codesDesign + codesProcess + codesPhysical + 
codesProblem + codesEDP + codesEDP2 + transcription + timestampRE 
 
## Construct more general RE for [anyText] 
 
possibleRE = r"""\[.*?\]""" 
 
## print (codes)  
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pattern = re.compile(codes) 
possiblePattern = re.compile (possibleRE) 
 
## print (pattern)  
## If the file is not empty keep reading line one at a time 
## until the file is empty 
 
## Read the first line 
line = fin.readline() 
FMT = '%H:%M:%S' 
 
while line: 
        if showLine : 
                print ('------------------')  
        if showLine: 
                print (line) 
        if showLine: 
                print ('------------------') 
        if len (line) > 1 : 
        ## Get array of [anyText] for each line and see if each one is syntactically correct.  
If not, issue and error. 
                possibleCodes  = re.findall (possiblePattern, line) 
                if possibleCodes : 
                        for currentCode in possibleCodes : 
                                ## print ('Current code: ' + currentCode)  
                                ## Get any value if present 
                                match = re.findall (pattern, currentCode) 
                                if not match : 
                                        printError ("Bad code: " + currentCode, line)  
 
                ##print nonedplist 
        line = fin.readline() 
fin.close() 
 
fouterror.close ()  
print ('Processing ' + inputfilename + ' complete')  
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APPENDIX G  

 
CODE EXTRACTION PROGRAM  

 
import string 
import re # regular expressions  
from datetime import datetime 
 
## This program takes a text file exported from Word and extracts all the research codes 
and timestamps into a format that can be imported into 
## EXCEL for further analysis.  3 files are produced along with an error log.   
## 
## 1) Maincodes:  EDP codes such as PLAN, BUILD, RESEARCH along with 
timestamps and durations.   
## 2) Subcodes:  EDP codes such as PLAN, BUILD-NORMAL, BUILD-REBUILD, abd 
RESEARCH along with timestamps and durations. 
## 3) Secondary (or non-EDP)  codes:  related phenomonon such causal reasoning, 
designerly play, and problem solving codes such as PROJECTION, INFERENCE, 
CREATIVE-PLAY.  Some 
## of these have values such as +, -, and =. 
##  
##This program was created as part of a dissertation research project that seeks to 
understand elementary 
## engineering processes. 
## 
## Author:  John Heffernan 
## Date:  May 7, 2016 
##  
 
## Function to get secondary code value, if any.  Returns None is none present.  
Secondary codes can have another hyphen so just extract the last one. 
## Example:  [SYSTEMS-THINKING-] 
                                 
def getSecondaryCodeValue (currentCode, line): 
        ## print (currentCode + "  " + line )  
        if '+]' in currentCode : 
                return '+' 
        if '-]' in currentCode : 
                return '-' 
        if '=]' in currentCode :  
                return '=' 
        if '?]' in currentCode : 
                printError ("Warning:  secondary code needs value: " + currentCode, line)  
                return '?'  
        return None 
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## Function to output an error of the transcript coding and the line. 
def printError (error, line):  
        print (error + ' in line ' + line + '\n' ) 
        fouterror.write (error + ' in line ' + line + '\n' ) 
 
## Function to check for and return an full code and subcode.   
def getEDPCode (line ) : 
        if '[BUILD-NORMAL]' in line : 
                return 'BUILD-NORMAL' 
        if '[BUILD-REBUILD' in line: 
                return 'BUILD-REBUILD' 
        if  '[EVALUATE-PHYSICAL]' in line : 
                return 'EVALUATE-PHYSICAL' 
        if '[EVALUATE-VERBAL]' in line  : 
                return 'EVALUATE-VERBAL' 
        if '[EVALUATE-VISUAL]' in line  : 
                return 'EVALUATE-VISUAL' 
        if '[EVALUATE-SYSTEM]' in line : 
                return 'EVALUATE-SYSTEM' 
        if '[PLAN]' in line : 
                return 'PLAN' 
        if '[PROGRAM-NORMAL]' in line : 
                return 'PROGRAM-NORMAL' 
        if '[PROGRAM-REPROGRAM]' in line  : 
                return 'PROGRAM-REPROGRAM' 
        if '[RESEARCH]' in line  : 
                return 'RESEARCH' 
        if '[SHARE-OUT]' in line : 
                return 'SHARE-OUT' 
        if '[WAIT]' in line  : 
                return 'WAIT' 
        return None 
 
## Function to translate main string code to a number code used by Excel to graph the 
EDP. 
def getExcelCode (stringCode, line) : 
        if 'PLAN' in stringCode : 
                return '6' 
        if 'RESEARCH' in stringCode : 
                return '5' 
        if 'BUILD' in stringCode : 
                return '4' 
        if 'PROGRAM' in stringCode : 
                return '3' 
        if 'EVALUATE' in stringCode : 
                return '2' 
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        if 'SHARE' in stringCode : 
                return '1' 
        if 'WAIT' in stringCode : 
                return '0' 
        printError ('Unknown string code', line ) 
        return None 
 
## Function to look for and return  a secondary (or concurrent) EDP phase.  This should 
only happen with verbal 
## output but the code checks all EDP phases even BUILD and the like and issues a error 
message in that case.   
def getEDPSCode (line ) :        
        if '[2:BUILD-NORMAL]' in line : 
                printError (error, line)  
                return 'BUILD-NORMAL' 
        if '[2:BUILD-REBUILD' in line: 
                printError (error, line)  
                return 'BUILD-REBUILD]' 
        if  '[2:EVALUATE-PHYSICAL]' in line : 
                printError (error, line)  
                return 'EVALUATE-PHYSICAL' 
        if '[2:EVALUATE-VERBAL]' in line  : 
                return 'EVALUATE-VERBAL' 
        if '[2:EVALUATE-VISUAL]' in line  : 
                return 'EVALUATE-VISUAL' 
        if '[2:EVALUATE-SYSTEM]' in line : 
                printError (error, line)  
                return 'EVALUATE-SYSTEM' 
        if '[2:PLAN]' in line : 
                return 'PLAN' 
        if '[2:PROGRAM-NORMAL]' in line : 
                printError (error, line)  
                return 'PROGRAM-NORMAL' 
        if '[2:PROGRAM-REPROGRAM]' in line  : 
                printError (error, line)  
                return 'PROGRAM-REPROGRAM' 
        if '[2:RESEARCH]' in line  : 
                printError (error, line)  
                return 'RESEARCH' 
        if '[2:SHARE-OUT]' in line : 
                return 'SHARE-OUT' 
        if '[2:WAIT]' in line  : 
                printError (error, line)  
                return 'WAIT' 
        if '[2:END]' in line  : 
                return 'END' 
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        return None 
 
def extractMainCode (code) : 
## Gets main code from full code with subcodes.  For example, EVALUATE-
PHYSICAL becomes EVALUATE. 
## Subcodes are separated from main code by a hyphen.  Some codes do not have 
subcodes.  PLAN is an 
## example. 
 
        if '-' in code : 
                maincode = code.split('-') 
                return maincode[0] 
        return code 
 
def strip (text) : 
## Strip out square brackets from a string 
        code = text.strip ('[]') 
        return code 
 
def stripS (text) : 
## Strip out square brackets from a secondary code string, which can have a value at the 
end.   
        code = text.strip ('[+-=?]') 
        return code 
 
def strip2 (text) : 
## Strip out square brackets and secondary code indicater from a string 
        code = text.strip ('[2:]') 
        return code 
 
# Open the transcript file with read only permissions.  File should be plain text, MAC 
OS, Western, Boy LF but 
# 'End Lines With Line Feeds" box not checked.  Export from Word.  Name and open all 
the output files.   
 
showLine = False  
genderNumber = input ("Gender space Number?") 
## genderNumber ='Boy 05' 
## genderNumber ='Girl 06' 
## genderNumber = 'Girl 08'  
inputfilename = genderNumber  + ' Ride Transcript CD.txt' 
outsubfilename = genderNumber  + 'Subcodes.txt' 
outmainfilename = genderNumber  + 'Maincodes.txt' 
outnonedpfilename = genderNumber  + 'NonEDPCodes.txt' 
errorfilename = genderNumber + 'Errors.txt'  
fin = open(inputfilename, 'r', encoding='latin-1', errors='backslashreplace')  
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foutsub = open (outsubfilename, 'w') 
foutmain = open (outmainfilename, 'w') 
foutnonedp = open (outnonedpfilename, 'w') 
fouterror= open (errorfilename, 'w') 
 
 
## Read the first line 
line = fin.readline() 
 
##  Construct a regular expression string for the secondary codes.   
codesCR = r"""\[CONTROL-VARIABLES[+-=?]\]|\[INFERENCE[+-=?]\]|\[MAGICAL-
THINKING\]|\[MULTIVARIATE-REASONING[+-=?]\]|\[PROJECTION[+-
=?]\]|\[SYSTEMS-THINKING[+-=?]\]|""" 
codesPlay = r"""\[CREATIVE-PLAY\]|\[TALK-TO-ROBOT\]|\[PLAYFUL-TALK\]|""" 
codesDesign = r"""\[SCALE[+-=?]\]|\[STABILITY[+-=?]\]|\[SYMMETRY[+-=?]\]|""" 
codesProcess = r"""\[CONNECTOR-META[+-=]\]|\[PARTS-FIRST\]|\[IDEA-
FIRST\]|\[PLAN-AHEAD[+-=]\]|""" 
codesPhysical = r"""\[FINE-MOTOR\]|""" 
codesProblem = r"""\[ATTEND-CONSTRAINTS[+-=?]\]|\[MATH[+-
=?]\]|\[PERSISTENCE[+-=?]\]|\[PROBLEM-SOLVED[+-=?]\]|\[SCIENCE[+-
=?]\]|\[SEQUENCING[+-=?]\]|\[TROUBLESHOOTING-TACTIC[+-
=?]\]|\[SYSTEMIC-TESTING[+-=?]\]""" 
codes = codesCR + codesPlay + codesDesign + codesProcess + codesPhysical + 
codesProblem 
## print (codes)  
 
pattern = re.compile(codes) 
##print (pattern)  
## If the file is not empty keep reading line one at a time 
## until the file is empty 
prevcode = "" 
prevmaincode = ""  
firstCode = True 
prevtime = ''  
FMT = '%H:%M:%S' 
##  Keep expected EDP concurrent or secondary EDP phase state so coding errors can be 
detected (2 ENDs in a row or 2 codes in a row (missing END))  
store = 1 
end = 2  
expectedSPhase = store 
## Write header row to EDP files. 
foutsub.write ('Time,Elapsed,Code \n') 
foutmain.write ('Time,Elapsed,Code,Code \n') 
while line: 
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        ## Is this a timestamp?  11 below should be 10 but Python seems to count LR/CR 
but not indexable 
        if showLine : 
                print ('------------------')  
        if showLine: 
                print (line) 
        if showLine: 
                print ('------------------') 
        if len (line) > 1 : 
                ## print (len (line) )  
                if line[1] == '[' : 
                        printError ('timeStamp Error', line)  
 
        ##  If we have a timestamped line  
        if len(line) >= 11 and line[0] == '[' and line[1].isdigit() : 
                ## print len (line) 
                ## print line 
                ##  See if any of our EDP codes are here.  First, check for a main EDP phase.  
Then for a concurrent or secondary EDP phase. 
                ##  Note that you could have one of each in the same line.   
                time = line[1:9] 
                code = getEDPCode (line) 
                if code : 
                        time = line[1:9] 
                        ## Primary EDP phase.  Since we need the elapsed time, we need to write 
out the previous code when the next EDP phase is detected. 
                        ## the current code and time becomes the previous time. 
                        ## print ("TIME: " + time, "PREVTIME: " , prevtime)  
                        ## print ("got EDP code")  
                        ## print m[0] 
                        ##print timestamp 
                        ##  Write out full EDP code such as BUILD-NORMAL 
                        ## print ('FC: ' ,  firstCode) 
                        maincode = extractMainCode (code) 
                        if not firstCode : 
                                delta = datetime.strptime(time, FMT) - datetime.strptime(prevtime, 
FMT) 
                                if delta.days < 0 : 
                                        printError ('Negative elapsed time', line)  
                                deltaStr = str(delta)   
                                timestamp = prevtime + ',' + deltaStr + ',' + prevcode + '\n' 
                                foutsub.write (timestamp) 
                                ## print ('------') 
                                ## print ('PREVIOUS: ', prevcode) 
                                ## print ('CURRENT: ' , maincode) 
                                ## print ('------')  
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                                ##print out main codes only if not the same as previous code such as 
BUILD because 2 full codes could have the same main code.   
                                if maincode != prevcode : 
                                        timestamp = prevtime  + ','  + deltaStr + ',' + prevmaincode + ',' 
+ getExcelCode(prevmaincode,line) + '\n' 
                                        foutmain.write (timestamp) 
                        firstCode = False 
                        prevtime = time 
                        prevcode = code  
                        prevmaincode = maincode 
 
                ##  Now see if there is a concurrent (secondary) EDP phase occuring.   
                sCode = getEDPSCode (line) 
                if sCode : 
                        ##  print ('Line: ', line, ' mainSCode: ', mainSCode)  
                        ##  Secondaary EDP Phase.  Save the code until END is detected, when it 
is written out.   
                        if sCode : 
                                ## print ('SCode:  ', mainSCode + '/n')  
                                if 'END' in sCode: 
                                        ##print ('---------', '\n') 
                                        ##print ('Detected END - writing stored secondary EDP Code ' + 
prevMainSCode + '\n') 
                                        if expectedSPhase == store : 
                                                printError ('Unexpected S Phase expecting store ', line)  
                                        ## print ('---------', '\n') 
                                        delta = datetime.strptime(time, FMT) - 
datetime.strptime(prevStime, FMT) 
                                        if delta.days < 0 : 
                                                printError ('Negative elapsed S time', line)  
                                        deltaStr = str(delta) 
                                        ## Write out full EDP code  
                                        timestamp = prevStime + ','  + deltaStr + ',' + prevSCode  + '\n' 
                                        foutsub.write (timestamp) 
                                        ## Write out main EDP code (no subcodes)  
                                        mainSCode = extractMainCode (prevSCode)  
                                        timestamp = prevStime + ',' + deltaStr + ',' + mainSCode + ','+ 
getExcelCode (mainSCode, line) +'\n' 
                                        foutmain.write (timestamp) 
                                        expectedSPhase = store  
                                else : 
                                        ##print ('---------', '\n') 
                                        ##print ('Detected and storing S Code: ', mainSCode, time) 
                                        if expectedSPhase == end :  
                                                printError ('Unexpected S Phase - expecting write/END ' , 
line )  
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                                        ## print ('---------', '\n') 
                                        prevSCode = sCode 
                                        prevStime = time 
                                        expectedSPhase = end  
                        firstCode = False 
 
                         
                ## Now check for non-EDP codes (and their value, if any).  Note that there 
may be more than one. 
                nonedplist = re.findall (pattern, line) 
                ##print line 
                if nonedplist: 
                        for currentCode in nonedplist: 
                                outputCode = strip (currentCode) 
                                ## Get any value if present 
                                value = getSecondaryCodeValue (currentCode, line) 
                                outputCode = stripS (currentCode)  
                                if value: 
                                        timestamp1 = time + ',' + outputCode + ',' + value + '\n' 
                                else : 
                                        timestamp1 = time + ',' + outputCode + '\n' 
 
                                foutnonedp.write (timestamp1) 
                ##print nonedplist 
        line = fin.readline() 
fin.close() 
foutsub.close () 
foutmain.close () 
foutnonedp.close () 
fouterror.close ()  
print ('Processing ' + inputfilename + ' complete')  
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APPENDIX H  

 
LEGO EXPERIENCE QUESTIONAIRE  

 
Goal:  determine if the student has had significant LEGO and/or LEGO robotics 
experience outside of school.  This will be judged at an age appropriate level.  Sixth 
grade students will fill out the questionnaire themselves.  Parents of second grade 
students will fill out the questionnaire.  The scale will be adjusted if it does not 
differentiate enough.   
 
SCORING:   
 
Q1:  3 points  
Q2:  3 points for grade 2, 1 point for grade 6  
Q3:  2 points for every instance.   
Q4:  2 points for every instance.   
Q5:  2 points for now, 1 point for in the past.  
 
3 or more points results in a + for LEGO Experience  
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ELEMENTARY ROBOTICS CASE STUDY 
University of Massachusetts, Amherst  

 
 
Dear Parent(s), 
 
Thanks so much for your child’s participation in this study!   I hope it was a fun and 
enjoyable experience for your child.   
 
One possibility already emerging from the study is that students’ out of school LEGO 
experience could be a significant factor in how they approach in-school LEGO 
challenges.  Please take a moment to fill out this short questionnaire that helps me 
understand how much out of school LEGO experience each student has.   
 
If you have any questions, you can call me at 413-320-5816 or email me at 
jheffernan@hr-k12.org.  You can return the questionnaire with your student or scan and 
email it to jheffernan@hr-k12.org by Wednesday, December 9, 2015.   
 
Thanks, 
 
John Heffernan  
 
 
Grade 2 LEGO Experience Questionnaire  
 
Student’s Name _________________________________ 
 
_____ My child uses LEGO Mindstorms NXT or EV3 at home.   

_____ My child uses LEGO WeDo at home.   

_____ My child has taken LEGO robotics enrichment classes after school or in the 

summer.  If true, about how many times? ____________ 

_____ My child has taken LEGO enrichment classes after school or in the summer.  If 

true, about how many times? ____________ 

_____  My child builds with LEGOs at home more than once a week either now or in the 

past.  If true, circle NOW or IN THE PAST.   
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Grade 6 LEGO Experience Questionnaire  
 
Name: ____________________________________    
 
Check if true.   
 
 
_____ I use LEGO Mindstorms NXT or EV3 at home.   

_____ I use LEGO WeDo at home.   

_____ I have taken LEGO robotics enrichment classes after school or in the summer.  If 

true, about how many times? ____________ 

_____ I have taken LEGO enrichment classes after school or in the summer.  If true, 

about how many times? ____________ 

_____  I build with LEGOs at home more than once a week either now or in the past.  If 

true, circle NOW or IN THE PAST.   
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