Table 1 - Paper Summary | Authors | Citations | Title | Туре | Domain | Framework | Age | Goal | Conclusion | |------------------------|-----------|--|-----------------|----------|---|------------|--|---| | Barak &
Zadok, 2009 | 41 | Robotics projects and learning concepts in science, technology and problem solving | Study | Robotics | Project based
learning,
constructivism | Jr. High | Problem Solving | Students intuitively used heuristic search to find solutions to problem but could not articulate their strategies. Students qualitatively used systems knowledge to solve problem and they could have benefited from specific, in-context, math, science, and tech knowledge. | | Baynes, 1994 | 11 | Designerly play | Theoretic
al | Design | Paper provides several theoretical frameworks for the design process: Jean Piaget, John Gabriel (play), and David Cohen & Stephen A MacKeith (imagination). | 0 to adult | Map out in detail the relationship between the play models of Gabriel and Cohen & MacKeith to aspects of design, | The ability to design is common and important to all children. | | Brophy et al.,
2008 | 124 | Advancing Engineering
Education in P-12
Classrooms | Review | Engineering | Constructivist (implicit) | PK-12 | Review current state of engineering education programs and research. | Engineering education is important to increase the STEM pipeline and is also of value in and of itself. While there are many worthy programs and some research, much more needs to be done and many research questions remain. | |--|-----|---|------------------------|---|--|-----------|---|--| | Crismond,
2001 | 71 | Learning and using science ideas when doing investigate-and-redesign tasks: A study of naive, novice, and expert designers doing constrained and scaffolded design work | Case
study | Design | Cognitive Design Framework (Leonard, Dufresne, Gerace, and Mestre) | Mixed | Science | Experts used science
concepts and general
principles in a
redesign task while
novices did not. | | Fleer, 1999 | 22 | The science of technology: Young children working technologically | Case
study | Design/Technol
ogy | Anning;
Solomon & Hall | Ages 5-11 | Characterize
relationship between
design ideas and actual
products | Drawings and ideas exceeded young students capabilities so they mostly worked with 3D models. Design and evaluate occurred throughout the design process. | | Fortus,
Krajcik,
Dershimer,
Marx, &
Mamlok-
Naaman,
2005 | 55 | Design-based science
and real-world
problem-solving | Quantitat
ive study | Design (Design
Based Science –
DBS) | Designerly Play (Baynes), problem solving and inquiry (constructivism) | Grade 9 | Science knowledge and
transfer | Transfer did occur
using DBS | | Hynes,
Crismond, &
Brizuela,
2010 | AC 2010-447: Middle-
School Teachers' Use
And Development Of
Engineering Subject
Matter Knowledge | Quantitat
ive study | Engineering | Constructivist | Middle
school
teachers | Use science content
knowledge to when
teaching engineering | Teachers did not necessarily use their math/science knowledge to teach engineering. Math teachers need to have engineering units with strong math content, similar for science. | |--|---|------------------------|-------------|---|------------------------------------|--|--| | Kendall & Wendell, 2012 | AC 2012-4068: Understanding The Beliefs And Perceptions Of Teachers Who Choose To Implement Engineering-Based Science Instruction | Mixed methods | Engineering | Constructivist, constructionist, self-efficacy, teacher beliefs | Grade 4
elementar
y teachers | Implement engineering based science instruction | Self-selected teachers for an engineering based science unit had high self-efficacy for teaching science but lower for outcome expectancy beliefs. Teachers came in with a constructivist viewpoint. Teachers viewed the program positively. | | Kolodner et
al., 2003 | 364 | Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting Learning by Design (TM) into practice | Descripti
ve with
some
data | Design/Engineer ing | Problem based
learning and
Case Based
Reasoning | Middle
School | The goal is to help students be creative collaborative design with a strong knowledge of how to use science to aid in design. | A key focus is on how to create the collaboration. Uses a situated learning approach but also designed in transfer from the start. Student data was positive but there were challenges in terms of teachers. | |--------------------------|-----|--|--------------------------------------|---------------------|---|------------------|---|---| | Leonard & Derry, 2011 | 4 | "What's the Science Behind It?" The Interaction of Engineering and Science Goals, Knowledge, and Practices in a Design- Based Science Activity | Qualitativ
e | Engineering | Constructivist, social constructivist, constructionist, pragmatist, modeling, activity theory, sociocultural theory | Middle
School | The goal is to help students be creative collaborative design with a strong knowledge of how to use science to aid in design. | Results showed that simple science models alone were not sufficient to enable the design task. Their conclusion is that thoughtful scaffolding is required to use engineering to teach science concepts. A pure scientific approach obscures the reality of actual system performance. A purely technological approach deprives studies of scientific concepts that will enable better solutions. | | McRobbie,
Stein, &
Ginns, 2001 | 24 | Exploring designerly
thinking of students as
novice designers | Case
study | Design | Not specified | Preservice
teachers | Help teachers
understand the design
processes actually
followed by students. | Students and novice designers do not follow the ideal design models that have been developed. System of modeling design actions could be used in my research. | |--|----|---|------------------|---------------------|--|------------------------|---|---| | Mehalik,
Doplet, &
Schunn, 2008 | 72 | Middle-school science
through design-based
learning versus
scripted inquiry: Better
overall science concept
learning and equity gap
reduction | Quantitat
ive | Design/engineer ing | Constructivist
(implied),
systems design | Grade 8 | Science concept
learning | Students using the systems design approach showed significant gains compared to the scripted inquiry approach, especially low achieving African-American students. | | Nourbakhsh,
Hamner,
Crowley, &
Wilkinson,
2004 | 24 | Formal measures of
learning in a secondary
school mobile robotics
course | Mixed
methods | Robotics | Constructionist | College
seniors | Broad learning;
establish methodology
to evaluate robotics
courses | Results showed both content, process, and interest gains. Girls had more difficulty with programming but confidence with technology increased more quickly than boys. | | Nugent,
Barker,
Grandgenett,
& Adamchuk,
2010 | 17 | Impact of robotics and geospatial technology interventions on youth STEM learning and attitudes | Quantitat
ive | Robotics and GIS | Experiential learning | Middle
School | Science content and motivation/interest | Researchers compared a control, a short term, and long term group for STEM learning and attitudes (self-efficacy). The long term (one week camp) showed increases all around. The short- term group showed increases in STEM interest/attitudes but not in STEM learning. | |---|-----|--|------------------|------------------|---|---|--|---| | Outterside,
1993 | 10 | The emergence of design ability: The early years | Case
study | Design | Design modeling (Baynes), multiple intelligence theory, constructivism (implicit) | Ages 2-4 | Understand very young children's design processes especially the interactions between perceiving, imagining, and modeling. | Children come to school with lots of experience and processes in place for design. Awareness of the processes and interactions between imaging and modeling is often implicit and should be made explicit in school. | | Penner, Giles,
Lehrer, &
Schauble,
1997 | 122 | Building functional
models: Designing an
elbow | Quantitat
ive | Design | Modeling,
constructivist
(implied) | Grades 1-2 | Model construction and model revision | Modeling can be taught and developed even for grade 1 and grade 2 children. | | Perova,
Johnson, &
Rogers, 2008 | | Using Lego Based Engineering Activities To Improve Understanding Concepts Of Speed, Velocity, And Acceleration | Mixed
methods | Robotics | Multiple
intelligence
theory and
constructivism | First year
college
and
secondary | Science concepts | Data showed positive results in terms of achievement and attitude. Demonstrati ons and especially hands-on were the most popular with students. | | Puntambekar | 24 | Distributed Scaffolding: | Design | Bruner, social | Middle | Find methods to help | Students need | |-------------|----|--------------------------|--------|----------------|--------|------------------------|----------------------| | & Kolodner, | | Helping Students Learn | | constructivist | school | middle school teachers | distributed | | 2005 | | Science from Design | | | | teach science using | scaffolding to fully | | | | | | | | design. Teach students | use science process | | | | | | | | science concepts and | and content in the | | | | | | | | processes. | context of design | | | | | | | | | based science | | | | | | | | | activities. | | Roth, 1996 | 127 | Art and Artifact of Children's Designing: A Situated Cognition Perspective | Qualitativ e (ethnogra phic) | Design | Situated cognition | Grades 4
and 5 | What is the nature of design artifacts from a situated cognition perspective? How can teaching be improved from such an analysis? | Artifacts are not ontologically stable Students will use whatever materials and processes they discover which may not match the teacher's intentions, Movements spread throughout classrooms so much that it is difficult to figure out individual performance, even though artifacts are named by students to belong to individuals or teams. | |------------|-----|--|------------------------------|--------|--------------------|-------------------|---|--| |------------|-----|--|------------------------------|--------|--------------------|-------------------|---|--| | Schunn, 2009 | 11 | How Kids Learn
Engineering: The
Cognitive Science
Perspective | Review | Engineering | Constructivist (implied) | K-16 | Increase STEM< pipeline, teach engineering as valuable in and of itself, teach science concepts | Gives practical tips
and methods for
teaching engineering | |-------------------|----|--|-----------------------------|-------------|---|------------------------------|---|--| | Sullivan,
2008 | 35 | Robotics and science
literacy: Thinking skills,
science process skills
and systems
understanding | Mixed
methods | Robotics | Constructivist
(implied),
mediated
learning, inquiry | Middle
School | Thinking skills, science process skills, systems understanding | Robotics instruction, with proper pedagogy, can increase content knowledge, thinking skills, and science process skills, and systems understanding, | | Wagner,
1999 | 25 | Robotics and Children
Science Achievement
and Problem Solving | Quantitat
ive,
review | Robotics | Constructionism | Grades
4,5,6
primarily | Compared robotic,
battery mechanism,
and traditional
treatments for science
achievement and
problem solving. | Robotics better for programming/proble m solving but both battery manipulative and robotics better than traditional treatment. | | Welch, 1999 | 45 | Analyzing the Tacit
Strategies of Novice
Designers | Case
study | Design | Extant design
process models | Grade 7 | Understanding actual
design strategies of
novice designers | Novice designers do not follow a model/expected design strategy but used a serial approach (not considering multiple possible designs first and evaluating them). Evaluation occurred much more than the models predicted. | | K. B. Wendell
& Lee, 2010 | 6 | Elementary students' learning of materials science practices through instruction based on engineering design tasks | Case
study | Engineering | Situated
learning, social
constructionist | Grade 3 | Science Content
specifically materials
science/engineering | Engineering based activity increased content understanding especially through the use of engineering workbooks. | |--|----|--|--------------------------------------|-------------|--|------------------|--|---| | K. Wendell et
al., 2010 | | AC 2010-863: Poster,
Incorporating
Engineering Design Into
Elementary School
Science Curricula | Descripti
ve,
quantitati
ve | Engineering | Situated cognition, distributed cognition, social constructivism | Elementar
y | Science Content | Pre and post testing showed that students learned science as well as or better than those with traditional methods but also learned engineering design in the process. Discourse, oral and/or written is important. | | M. K. B.
Wendell &
Portsmore,
2011 | | AC 2011-904: The
Impact Of Engineering-
Based Science
Instruction On Science
Content Understanding | Quantitat
ive | Engineering | Learning by
Design, situated
and distributed
cognition | Elementar
y | Science Content | Students showed science content gains even when controlled for teacher. Attitudes were positive towards science in engineering based and traditional classes. | | Williams, Ma,
Lai, Prejean,
& Ford, 2007 | 26 | Acquisition of Physics
Content Knowledge and
Scientific Inquiry Skills
in a Robotics Summer
Camp | Mixed
methods | Robotics | Constructionism | Middle
school | Science content
knowledge and inquiry
skills | Study showed content gains but not inquiry skills. However, it was only a 2-week camp. |